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Evaluation of the Potential of Prosopis juliflora Biomass for 2G Bioethanol Production: Chemical
Characterization and Enzymatic Hydrolysis
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This study aims to characterize different parts of the plant Prosopis juliflora (Algaroba) and to evaluate the
potential of its biomass for second-generation (2G) bioethanol production. Different parts of the plant (Prosopis
Jjuliflora in natura) were evaluated for cellulose, hemicellulose, lignin, moisture, and ash content, in addition to
the yield of reducing sugars in enzymatic hydrolysis with cellulase from Trichoderma reesei. The results indicated
that the stem bark, rich in cellulose (38.71%) and hemicellulose (21.68%), showed the highest saccharification
yield (2.74 mg/mL in 24 h). In contrast, fractions with a high lignin content, such as the pod with seed (45.91%),
require pretreatments to make enzymatic conversion feasible. The strategic selection of the biomass fraction and
the use of appropriate methods are crucial for optimizing the recovery of fermentable sugars, enabling the use

of Algaroba in biofuel production.
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Ethanol has emerged as a viable and complementary
energy option to fossil fuels in the transportation sector,
stimulating research focused on improving biofuels
derived from renewable sources [1]. In this context,
lignocellulosic biomass stands out as a promising
feedstock due to its wide availability, low cost,
and the absence of direct competition with food
production [2-4].

Lignocellulosic biomass is composed of cellulose
(40-50%), hemicellulose (20-30%), and lignin
(10-25%), in addition to smaller amounts of ash,
pectin, proteins, non-structural carbohydrates,
and extractives. Its chemical composition varies
according to the source and cultivation conditions,
making initial characterization essential to define
efficient strategies for producing biofuels and
bioproducts. Hydrolysis of the biomass, following
pretreatment, is the second most important step
in bioethanol production, as it determines the
efficiency of generating the desired product.
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Hydrolysis converts cellulose and hemicellulose
polymers into fermentable sugars through either
acid or enzymatic processes [1,5,6].

The plant species Prosopis juliflora, commonly
known as Algaroba, has garnered attention due to
its characteristics: it is a small to medium-sized
tree with high resistance to adverse environmental
conditions, such as arid, saline, and high-pH soils,
and is considered invasive in semi-arid regions
[7-10].

Theuse of P, juliflora as a feedstock for bioethanol
production is a promising strategy to contain its
spread in ecosystems where it is invasive, combining
both environmental and economic benefits.
In this context, this study aims to characterize
the different parts of P. juliflora in natura and to
evaluate the properties of its hydrolysate, thereby
understanding its potential for biotechnological
applications and its relevance as a raw material in
industrial processes.

Materials and Methods

To chemically characterize Algaroba biomass in
natura (stem bark, woody stem, pod bark, pod with
seed, pulp without seed, and seed), this procedure
evaluated moisture and ash content, as well as
cellulose, hemicellulose, and lignin fractions.
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The determination of total solids and moisture
followed the protocol described by Sluiter and
colleagues [11], the sample was weighed before
and after drying at 105°C. Ash content was
quantified by calcination in a muffle furnace,
following the method by Sluiter and colleagues
[12]. Lignin quantification, adapted from Silwadi
and colleagues [13] and Sluiter and colleagues [14],
involved acid hydrolysis to separate the insoluble
fraction (AIL) and allowed quantification of the
soluble fraction (ASL) by spectrophotometry.
Cellulose determination was performed as described
by Asgher and colleagues [15], Bauer and Ibanez
[16], Updegraff [17], and adapted from Ribeiro
and Assis [18], using hydrolysis with nitric acid
and acetic acid, followed by colorimetric analysis
with the anthrone reagent. Hemicellulose content
was estimated according to Kapoor and colleagues
[19], by alkaline extraction and final precipitation
induced by sulfuric acid and ethanol.

For enzymatic hydrolysis, commercial cellulase
from Trichoderma reesei ATCC 26921 (Sigma-
Aldrich©, Merck KGaA, Darmstadt, Germany) was
used. Biomass was suspended in citrate-phosphate
buffer (100 mmol/L, pH 5) at a concentration of 5%
(w/v) [20-24]. The mixture was maintained at 50°C
and 150 rpm for 2 hours, followed by the addition
of the enzyme (10 U/g dry biomass). Two controls
were used: one without substrate (enzyme only)
and one without enzyme (substrate only). After 24
hours, reducing sugars were quantified using the
DNS reagent, as described by Miller [25], with
absorbance measured at 540 nm using a UV/Vis
spectrophotometer.

Results and Discussion

The data in Table 1 show marked contrasts in the
composition of different parts of P. juliflora, which
can directly influence biotechnological utilization
routes. The stem bark presented high levels of
cellulose (38.71%) and hemicellulose (21.68%),
totaling 60.39% holocellulose. This profile suggests
potential for processes based on fermentable sugars
due to the high proportion of easily hydrolyzable
components.

The woody stem, although similar in cellulose
content (38.24%), had lower hemicellulose content
(16.46%), resulting in a slightly lower holocellulose
content (54.71%). Still, both fractions show promise
for biochemical conversion.

The pod bark showed a low cellulose content
(6.85%) but a higher hemicellulose content (21.06%).
Its high ash (5.66%) and moisture (20.87%) suggest
the need for additional preprocessing steps to
avoid yield losses. The pod with seed had high
cellulose (39.33%) and the highest lignin (45.91%),
requiring more intensive pretreatments to reduce
lignin recalcitrance and enable efficient sugar
release. However, this fraction also had the highest
holocellulose (61.68%), indicating significant
potential once lignin barriers are overcome.

The pulp without seeds, with moderate cellulose
(23.56%), hemicellulose (21.13%), and lignin
(20.52%), presented a balanced composition,
indicating moderate potential for enzymatic
hydrolysis. In contrast, the seed contained very low
levels of fibrous constituents (7.12% cellulose and
10.57% hemicellulose), making it less suitable for
sugar-focused bioconversion.

Comparing results with the literature, partial
agreement was observed. [22,24,26,27] analyzed
woody fractions of P, juliflora and reported cellulose
contents between 45-49.4%, hemicellulose 18-25%,
and lignin 18-29.1%, values close to those in this
study (38.24%, 16.46%, and 22.65%, respectively).
For stem bark, holocellulose (60.39%) and lignin
(28.06%) aligned with Gupta, Sharma and Kuhad
[21]. For the pod (or pod with seed), Gayathri
and Uppuluri [28] reported 26% cellulose, 30%
hemicellulose, and 4% lignin, showing partial
convergence but divergence in lignin content.
These differences, especially in seed and pulp
fractions, reinforce the need for specific evaluations,
considering lignin’s barrier role in hydrolysis and
holocellulose’s importance for fermentation.

Table 2 presents the reducing sugar yields from
the enzymatic saccharification of P. juliflora in
natura over 24 hours and 48 hours. The stem bark
showed the best performance, reaching 2.74 mg/
mL (13.23%) at 24 h, and then decreasing to 2.56
mg/mL (10.77%) at 48 h, likely due to enzyme
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Table 1. Chemical composition of biomass samples.

Sample Moisture Ash Cellulose Hemicellulose Total Lignin Holocellulose

() (o) (%) (%) (o) (o)
Stem bark 7.76 3.83 38.71 21.68 28.06 60.39
Woody stem 2.81 0.64  38.24 16.46 22.65 54.71
Pod husk 20.87  5.66 6.85 21.06 16.87 27.92
Pod with seed 1799 531 39.33 22.35 4591 61.68
Pulp without seed  21.11 570 23.56 21.13 20.52 44.69
Seed 5.40 2.49 7.12 10.57 11.47 17.69

Values in % g/100 g of dry biomass.

Table 2. Enzymatic hydrolysis of raw Algaroba biomass.

Enzymatic hydrolysis after Enzymatic hydrolysis after

Sample 24 h reaction (mg/mL) (%) 48 h reaction (mg/mL) (%)
Stem bark 2.74 (13.23%) 2.56 (10.77%)
Woody stem 0.03 (0.11%) 0.30 (1.22%)

Pod with seed 1.38 (7.43%) 1.44 (6.69%)

Values expressed in mg/mL and %.

inhibition by by-products or active site saturation.
Woody stem had modest values at 24 h (0.03 mg/
mL, 0.11%), increasing slightly at 48 h (0.30 mg/
mL, 1.22%). The pod with seed reached 1.38 mg/
mL (7.43%) at 24 h and 1.44 mg/mL (6.69%) at 48
h, indicating intermediate yields.

Other authors observed that specific pretreatments
resulted in higher yields. Deswal and colleagues
[20] and Naseeruddin and colleagues [29] reported
3.9 mg/mL/g sugar yields from woody P. juliflora.
Gupta, Khasa and Kuhad [21] in 2009 achieved
18.45 mg/mL after lignin removal, and, in 2011
the same authors reported 33% yield using 7. reesei
cellulase supplemented with A. niger B-glucosidase
(Novozyme 188) [22].

Conclusion

The results demonstrate that the composition
of different P. juliflora fractions directly

influence fermentable sugar yields. The stem
bark, with higher cellulose and hemicellulose,
stood out in enzymatic hydrolysis. Fractions
with high lignin content, such as those with
seeds, require pretreatments for efficient
conversion.

Previous studies confirm the importance of
lignin removal and enzyme supplementation
(notably B-glucosidase) to increase hydrolysis
efficiency. Thus, careful selection of biomass
fraction, combined with efficient pretreatments and
optimized enzyme cocktails, emerges as a decisive
strategy to enhance sustainable sugar and biofuel
production from P. juliflora.
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