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Panda Manipulator Control with Obstacle Avoidance Through Reinforcement Learning in a 
Simulated Environment
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Robotic systems with learning capabilities have many powerful applications in unstructured environments. 
Through reinforcement learning, robots can quickly adapt to new situations and learn from direct environmental 
interaction. This work proposes a simulation environment based on Robotics Toolbox for Python to solve a 
classic problem of the inverse kinematics of manipulators, ensuring that the robot reaches the desired position 
without colliding with the obstacles present in the scene. The potential of this reinforcement learning method is 
illustrated through simulation using the Franka-Emika Panda manipulator trained by the Deep Deterministic 
Policy Gradient algorithm.
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Commercial and industrial robots nowadays 
have a wide range of applications. They often assist 
humans in dangerous, repetitive, and exhausting 
tasks. Many extreme environments are challenging 
to access or require expensive logistics to transport 
specialized personnel. One of intelligent robotics's 
main challenges is creating robots capable of 
interacting directly with the world around them to 
achieve their goals [1]. The wide variety of usage 
scenarios and environmental variations suggests 
that an effective manipulator must be able to cope 
with environments that neither it nor its designers 
have foreseen or encountered before. The growing 
availability of computational resources has 
boosted the development of machine learning, 
enabling the emergence of promising technologies 
such as recommendation systems, autonomous 
vehicles, video games, energy management, and 
robotics, among others [2].

Deep Reinforcement Learning (DRL) is the 
combination of Reinforcement Learning (RL) and 
Deep Learning (DL). Reinforcement Learning 
is a machine learning method where the Agent 
learns the ideal behavior in an environment 

through trial-and- error interactions to obtain the 
maximum reward. RL, the Agent has the function 
of taking actions to resolve complex problems, 
interacting with the environment that responds 
with observations or states, and rewards or costs 
[3].

These two components continuously interact so 
that the Agent tries to influence the environment; 
at each interaction step, the Agent receives an 
observation of the state of the world and then 
decides which action to take; for each action, he 
receives a reward signal from the environment 
(Figure 1). This reward needs to inform how 
successful the action was on the way to achieving 
the goal, so maximizing the total reward will lead 
the Agent to solve the problem by taking the best 
actions.

Training with a real robot is expensive 
because machine learning requires considerable 
data representing the robot's experience in the 
environment. Researchers have sought ways 

Figure 1. Reinforcement learning scheme.
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to reduce this dependency through training 
approaches by simulation due to the low risk to 
equipment parts and the availability of synthetic 
data acquired using many simulations. However, 
this approach needs to include strategies to 
minimize the reality gap.

Inverse kinematics is a classic problem in 
robotics. The aim is to determine the angles of 
a manipulator's joints to achieve a specific pose 
in space. This problem can be addressed in two 
main ways: analytical methods, which provide 
direct mathematical solutions, or numerical 
methods, which involve iterative algorithms such 
as optimization or solving systems of non-linear 
equations [4].

Reinforcement learning (RL) presents a model-
free alternative to robot control. In this strategy, 
the robot learns a control policy by interacting with 
its environment and learning to make decisions 
that result in desired behaviors, such as reaching 
a pose or manipulating objects. This strategy is 
particularly effective when there is no perfect 
model of the system or when the environment 
is complex and non-deterministic, allowing the 
robot to adapt and improve its performance based 
on accumulated experience.

This project aims to solve the problem of 
inverse kinematics using a simplified environment 
built with Robotics Toolbox for Python [5]. 
This framework provides specific robotics 
functionalities to represent the kinematics and 
dynamics of rigid and mobile manipulators, 
making it possible to import a URDF file or 
use more than 30 models provided and create 
obstacles.

For the experiment, the Franka-Emika Panda 
collaborative robot was included to reach a final 
position, starting from a random initial position, 
without colliding with the obstacles in the scene.

In this context, it is useful to present a 
reinforcement learning environment for training 
robot manipulators in Python. The simulator is 
based on the Robotics Toolbox for Python. The 
environment provides training and visualization 
modules to compare standard DRL algorithms, 

such as the Deep Deterministic Policy Gradient 
(DDPG) algorithm.

 
Materials and Methods

The Robotics Toolbox for Python library 
was used to create the simulation environment 
and represent the kinematics of the manipulator. 
The floor, the table (obstacle), and the Panda 
manipulator were added in this step. A random 
initial position for the robot and target was used, 
as shown in Figures 2 and 3.

The Franka Emika company manufactures the 
Panda manipulator to achieve high performance 
and affordability, combining human-centered 
design. The responsive arm features 7 degrees of 
freedom with torque sensors at each joint, allowing 
for an adjustable fit and advanced torque control. 
It has a payload of 3kg and a reach of 855mm. 
The joints of the Panda robot have specific range 
limits to ensure safe and effective operation: 
Joint 0, joint 2, joint 4, and joint 6 have a range 
of -166° to 166°, joint 1 ranges from -101° to 
101°, joint 3 ranges from -176° to 4° and joint 5 
ranges from -1° to 215°.

Our main assumptions are that motion occurs 
in 3D, initial states are random (Figure 2), and 
actions are continuous with 7 active rotational 
joints, allowing for collisions with the table, floor, 
and joint boundaries (Figure 3).

The Deep Deterministic Policy Gradient 
(DDPG) algorithm was used for training. This 
algorithm is a variation of actor-critic suitable 
for environments with continuous action spaces. 
DDPG is based on using deep neural networks 
to estimate actor policies and critic values. This 
off-policy algorithm aims to learn a deterministic 
policy that maximizes expected returns in a 
continuous environment.

The method collects experiences, selects 
actions according to the actor's current policy, and 
stores rewards and states in the replay buffer. The 
Agent samples a batch of experiences, calculates 
discounted future rewards using the target crit 
network, and updates the critic weights. The actor's 
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network is updated using an upward gradient to 
maximize the Q value estimated by the critic. 
Training continues iteratively, updating networks 
to improve policy and value estimation.

The neural networks are initialized during 
training, and the actor-network policy is applied 
to each episode. An exploration noise, known as 
Ornstein-Uhlenbeck, is added to the action taken 
by the Agent to ensure further exploration of the 
environment. The Agent acts as the environment 
and, in response, receives the next state, the 
reward obtained, and a flag indicating whether the 
episode has been completed. When the amount 
of stored experiences exceeds the batch size, the 
Agent updates its actor and critic networks using 
samples from the replay buffer. The actor-network 
is updated to improve the policy using the policy 
gradient method. Meanwhile, the critic network is 

updated to minimize the mean square error (MSE) 
between the estimated and desired Q-values.

The reward function used is a scalar reward 
function (1), which aims to balance two crucial 
aspects of the manipulator's behavior: the robot's 
proximity to the target and the magnitude of the 
action performed. The total reward is a weighted 
sum of two components and their coefficients.

 (1)

𝐶1, weights the importance of proximity to 
the target, indicating a significant penalty for 
considerable distances to the target, and 𝐶2weights 
the magnitude of the action, encouraging more 
minor actions to promote efficient movements.

Figure 2. Robot in starting position.

Figure 3. Robot in final position.
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and the obstacles after resetting the manipulator, 
and Figure 3 represents the final state of the 
robot, with the objective achieved. The model's 
architecture includes neural networks for the 
actor and the critic. Both networks are configured 
with multiple densely connected layers, using 
Rectified Linear Unit (ReLU) activation functions 
in the hidden layers and a Tangent Hyperbolic 
(Tanh) activation function in the output layer of 
the actor network. This architecture allows the 
model to learn and generalize complex control 
patterns, optimizing the Agent's performance in 
the simulation environment.

The manipulator was trained with the 
parameters described in Table 1, and its average 
reward converged around 480. In the simulation 
phase, he obtained a total reward of 500 and 
completed the task in 1 step. After optimization 
on the hyperparameters, the Agent was trained 
with the reward function described by Eq. (1), 
converging on a successful positioning trajectory.

Figure 4 presents the best model's success rates, 
collision rates, and average reward values. The 
average reward stabilizes around 500, indicating 
policy convergence. The success and collision 
graphs demonstrate that the Agent quickly learns 
to avoid obstacles and reach the target efficiently.

The object proximity reward 𝑟tg (2) encourages 
the manipulator to approach the goal precisely, 
where d is the manipulator's current distance 
from the goal and 𝛿 is a smoothing parameter. 
The action magnitude reward 𝑟action penalizes 
large action magnitudes, encouraging smooth and 
efficient movements, a is the applied action vector 
(3).

  
(2)

  (3)

Collision and step penalties ensure that 
the Agent minimizes excessive movements 
and avoids collisions. For example, the Agent 
receives a -0.5 penalty for each step taken 
during the episode, encouraging it to complete 
the task efficiently. Collisions with obstacles 
result in a significant penalty of -500 to avoid 
unsafe behavior. On the other hand, the Agent 
is rewarded with 500 when it reaches the goal. 
During agent training in the simulated Panda 
robot environment, fitness is calculated at each 
step to provide a metric for the Agent to adjust its 
actions and improve its performance. This metric 
continuously evaluates the position and orientation 
of the robot's end-effector relative to the desired 
target. Training involves applying the Agent's 
action, calculating the new state, evaluating the 
fitness, and deciding on the reward. The task is 
completed when the fitness value is smaller than 
the target of 0.004.

 
Results and Discussion

The training rounds were carried out using the 
Optuna optimizer [6] to automate adjusting the 
hyperparameters, saving time and computational 
resources. The result of this study provided 
the parameters for the best-performing model, 
aiming to achieve the manipulator's final position 
without any collision with obstacles (Table, Floor, 
Joint Boundaries) in the environment. Figure 2 
represents the random initial position of the robot 

Table 1. Training parameters.

Parameter Value
Learning Rate 0.001
Total Number of Steps 200000
Batch Size 200
Fitness 0.004
Step Penalty -0.5
Collision Penalty -500
Sucess Reward 500
Gamma 0.99
Memory Size 50000
First Hidden Layer 1200
Second Hidden Layer 1800
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Figure 4. Success rate, collision rate, and average reward.
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To illustrate the results,          we have included 
a file (https://1drv.ms/f/c/f6931d804d905e8a/
EhicS8adWDFIsr0h8sRQ0fgBCT1u13Vxfcqy 
29-j0Vwpnw?e=KI1WcZ) containing simulations 
that characterize successful tasks, failed tasks and 
random start positions of the manipulator based on 
the trained model.

 

Conclusion

This work demonstrated the applicability and 
use of the DDPG algorithm and the Robotics 
Toolbox for the Python environment for the classic 
inverse kinematics problem. The results indicate 
that the trained Agent could learn to interact with 
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the environment appropriately, reaching the goal 
in a minimum number of steps and avoiding 
collisions. The designed reward function, 
which balances the target's proximity and the 
actions' magnitude, proved effective in learning. 
The simulation environment allows the necessary 
skills to be developed in a safe, controlled, and 
easy-to-install interface without relying on a real 
robot, saving time and costs. These learnings can 
be transferred and tested on real manipulators 
after performing well in some situations. For 
future studies and improvements, implementing 
the task in a simulation environment with more 
realistic physics, such as Pybullet, would help to 
reduce the gap between simulation and reality. 
In addition, tests with reinforcement learning 
algorithms already used in other robotic tasks, 
such as Proximal Policy Optimization (PPO), 
could provide a solid comparative basis.
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