
www.jbth.com.br

68

Panda Manipulator Control with Obstacle Avoidance Through Reinforcement Learning in a
Simulated Environment

Marcelo Albergaria Paulino Fernandes Ferreira1*, Taniel Silva Franklin1,Oberdan Rocha Pinheiro1

1SENAI CIMATEC University; Salvador, Bahia, Brazil

Robotic systems with learning capabilities have many powerful applications in unstructured environments.
Through reinforcement learning, robots can quickly adapt to new situations and learn from direct environmental
interaction. This work proposes a simulation environment based on Robotics Toolbox for Python to solve a
classic problem of the inverse kinematics of manipulators, ensuring that the robot reaches the desired position
without colliding with the obstacles present in the scene. The potential of this reinforcement learning method is
illustrated through simulation using the Franka-Emika Panda manipulator trained by the Deep Deterministic
Policy Gradient algorithm.
Keywords: Reinforcement Learning. Machine Learning. Robotics.

Received on 27 September 2024; revised 28 December 2024.
Address for correspondence: Marcelo Albergaria Paulino
Fernandes Ferreira. Av. Orlando Gomes, 1845, Piatã.
Zipcode: 41650-010. Salvador, Bahia, Brazil. E-mail:
marcelo_albergaria@hotmail.com.

J Bioeng. Tech. Health 2025;8(1):68-73
© 2025 by SENAI CIMATEC. All rights reserved.

Commercial and industrial robots nowadays
have a wide range of applications. They often assist
humans in dangerous, repetitive, and exhausting
tasks. Many extreme environments are challenging
to access or require expensive logistics to transport
specialized personnel. One of intelligent robotics's
main challenges is creating robots capable of
interacting directly with the world around them to
achieve their goals [1]. The wide variety of usage
scenarios and environmental variations suggests
that an effective manipulator must be able to cope
with environments that neither it nor its designers
have foreseen or encountered before. The growing
availability of computational resources has
boosted the development of machine learning,
enabling the emergence of promising technologies
such as recommendation systems, autonomous
vehicles, video games, energy management, and
robotics, among others [2].

Deep Reinforcement Learning (DRL) is the
combination of Reinforcement Learning (RL) and
Deep Learning (DL). Reinforcement Learning
is a machine learning method where the Agent
learns the ideal behavior in an environment

through trial-and- error interactions to obtain the
maximum reward. RL, the Agent has the function
of taking actions to resolve complex problems,
interacting with the environment that responds
with observations or states, and rewards or costs
[3].

These two components continuously interact so
that the Agent tries to influence the environment;
at each interaction step, the Agent receives an
observation of the state of the world and then
decides which action to take; for each action, he
receives a reward signal from the environment
(Figure 1). This reward needs to inform how
successful the action was on the way to achieving
the goal, so maximizing the total reward will lead
the Agent to solve the problem by taking the best
actions.

Training with a real robot is expensive
because machine learning requires considerable
data representing the robot's experience in the
environment. Researchers have sought ways

Figure 1. Reinforcement learning scheme.

State Reward

Agent

Environment

Action

www.jbth.com.br

JBTH 2025; (February) 69Panda Manipulator Control

to reduce this dependency through training
approaches by simulation due to the low risk to
equipment parts and the availability of synthetic
data acquired using many simulations. However,
this approach needs to include strategies to
minimize the reality gap.

Inverse kinematics is a classic problem in
robotics. The aim is to determine the angles of
a manipulator's joints to achieve a specific pose
in space. This problem can be addressed in two
main ways: analytical methods, which provide
direct mathematical solutions, or numerical
methods, which involve iterative algorithms such
as optimization or solving systems of non-linear
equations [4].

Reinforcement learning (RL) presents a model-
free alternative to robot control. In this strategy,
the robot learns a control policy by interacting with
its environment and learning to make decisions
that result in desired behaviors, such as reaching
a pose or manipulating objects. This strategy is
particularly effective when there is no perfect
model of the system or when the environment
is complex and non-deterministic, allowing the
robot to adapt and improve its performance based
on accumulated experience.

This project aims to solve the problem of
inverse kinematics using a simplified environment
built with Robotics Toolbox for Python [5].
This framework provides specific robotics
functionalities to represent the kinematics and
dynamics of rigid and mobile manipulators,
making it possible to import a URDF file or
use more than 30 models provided and create
obstacles.

For the experiment, the Franka-Emika Panda
collaborative robot was included to reach a final
position, starting from a random initial position,
without colliding with the obstacles in the scene.

In this context, it is useful to present a
reinforcement learning environment for training
robot manipulators in Python. The simulator is
based on the Robotics Toolbox for Python. The
environment provides training and visualization
modules to compare standard DRL algorithms,

such as the Deep Deterministic Policy Gradient
(DDPG) algorithm.

Materials and Methods

The Robotics Toolbox for Python library
was used to create the simulation environment
and represent the kinematics of the manipulator.
The floor, the table (obstacle), and the Panda
manipulator were added in this step. A random
initial position for the robot and target was used,
as shown in Figures 2 and 3.

The Franka Emika company manufactures the
Panda manipulator to achieve high performance
and affordability, combining human-centered
design. The responsive arm features 7 degrees of
freedom with torque sensors at each joint, allowing
for an adjustable fit and advanced torque control.
It has a payload of 3kg and a reach of 855mm.
The joints of the Panda robot have specific range
limits to ensure safe and effective operation:
Joint 0, joint 2, joint 4, and joint 6 have a range
of -166° to 166°, joint 1 ranges from -101° to
101°, joint 3 ranges from -176° to 4° and joint 5
ranges from -1° to 215°.

Our main assumptions are that motion occurs
in 3D, initial states are random (Figure 2), and
actions are continuous with 7 active rotational
joints, allowing for collisions with the table, floor,
and joint boundaries (Figure 3).

The Deep Deterministic Policy Gradient
(DDPG) algorithm was used for training. This
algorithm is a variation of actor-critic suitable
for environments with continuous action spaces.
DDPG is based on using deep neural networks
to estimate actor policies and critic values. This
off-policy algorithm aims to learn a deterministic
policy that maximizes expected returns in a
continuous environment.

The method collects experiences, selects
actions according to the actor's current policy, and
stores rewards and states in the replay buffer. The
Agent samples a batch of experiences, calculates
discounted future rewards using the target crit
network, and updates the critic weights. The actor's

www.jbth.com.br

70 JBTH 2025; (February)Panda Manipulator Control

network is updated using an upward gradient to
maximize the Q value estimated by the critic.
Training continues iteratively, updating networks
to improve policy and value estimation.

The neural networks are initialized during
training, and the actor-network policy is applied
to each episode. An exploration noise, known as
Ornstein-Uhlenbeck, is added to the action taken
by the Agent to ensure further exploration of the
environment. The Agent acts as the environment
and, in response, receives the next state, the
reward obtained, and a flag indicating whether the
episode has been completed. When the amount
of stored experiences exceeds the batch size, the
Agent updates its actor and critic networks using
samples from the replay buffer. The actor-network
is updated to improve the policy using the policy
gradient method. Meanwhile, the critic network is

updated to minimize the mean square error (MSE)
between the estimated and desired Q-values.

The reward function used is a scalar reward
function (1), which aims to balance two crucial
aspects of the manipulator's behavior: the robot's
proximity to the target and the magnitude of the
action performed. The total reward is a weighted
sum of two components and their coefficients.

 (1)

𝐶1, weights the importance of proximity to
the target, indicating a significant penalty for
considerable distances to the target, and 𝐶2weights
the magnitude of the action, encouraging more
minor actions to promote efficient movements.

Figure 2. Robot in starting position.

Figure 3. Robot in final position.

www.jbth.com.br

JBTH 2025; (February) 71Panda Manipulator Control

and the obstacles after resetting the manipulator,
and Figure 3 represents the final state of the
robot, with the objective achieved. The model's
architecture includes neural networks for the
actor and the critic. Both networks are configured
with multiple densely connected layers, using
Rectified Linear Unit (ReLU) activation functions
in the hidden layers and a Tangent Hyperbolic
(Tanh) activation function in the output layer of
the actor network. This architecture allows the
model to learn and generalize complex control
patterns, optimizing the Agent's performance in
the simulation environment.

The manipulator was trained with the
parameters described in Table 1, and its average
reward converged around 480. In the simulation
phase, he obtained a total reward of 500 and
completed the task in 1 step. After optimization
on the hyperparameters, the Agent was trained
with the reward function described by Eq. (1),
converging on a successful positioning trajectory.

Figure 4 presents the best model's success rates,
collision rates, and average reward values. The
average reward stabilizes around 500, indicating
policy convergence. The success and collision
graphs demonstrate that the Agent quickly learns
to avoid obstacles and reach the target efficiently.

The object proximity reward 𝑟tg (2) encourages
the manipulator to approach the goal precisely,
where d is the manipulator's current distance
from the goal and 𝛿 is a smoothing parameter.
The action magnitude reward 𝑟action penalizes
large action magnitudes, encouraging smooth and
efficient movements, a is the applied action vector
(3).

(2)

 (3)

Collision and step penalties ensure that
the Agent minimizes excessive movements
and avoids collisions. For example, the Agent
receives a -0.5 penalty for each step taken
during the episode, encouraging it to complete
the task efficiently. Collisions with obstacles
result in a significant penalty of -500 to avoid
unsafe behavior. On the other hand, the Agent
is rewarded with 500 when it reaches the goal.
During agent training in the simulated Panda
robot environment, fitness is calculated at each
step to provide a metric for the Agent to adjust its
actions and improve its performance. This metric
continuously evaluates the position and orientation
of the robot's end-effector relative to the desired
target. Training involves applying the Agent's
action, calculating the new state, evaluating the
fitness, and deciding on the reward. The task is
completed when the fitness value is smaller than
the target of 0.004.

Results and Discussion

The training rounds were carried out using the
Optuna optimizer [6] to automate adjusting the
hyperparameters, saving time and computational
resources. The result of this study provided
the parameters for the best-performing model,
aiming to achieve the manipulator's final position
without any collision with obstacles (Table, Floor,
Joint Boundaries) in the environment. Figure 2
represents the random initial position of the robot

Table 1. Training parameters.

Parameter Value
Learning Rate 0.001
Total Number of Steps 200000
Batch Size 200
Fitness 0.004
Step Penalty -0.5
Collision Penalty -500
Sucess Reward 500
Gamma 0.99
Memory Size 50000
First Hidden Layer 1200
Second Hidden Layer 1800

www.jbth.com.br

72 JBTH 2025; (February)Panda Manipulator Control

Figure 4. Success rate, collision rate, and average reward.

0

0

0

-750

1.0

0.8

0.6

0.4

0.2

0.0

0.0125

0.0100

0.0075

0.0050

0.0025

-500

-250

0

250

500

25000

25000

25000

A
v
e
ra

g
e
 R

e
w

a
rd

S
u
c
c
e
s
s
 R

a
te

C
o
lli

s
io

n
 R

a
te

50000

50000

50000

75000

75000

75000

100000

100000

100000

Epochs

Epochs

Epochs

Agent Performance

125000

125000

125000

150000

150000

150000

175000

175000

175000

200000

200000

200000

To illustrate the results, we have included
a file (https://1drv.ms/f/c/f6931d804d905e8a/
EhicS8adWDFIsr0h8sRQ0fgBCT1u13Vxfcqy
29-j0Vwpnw?e=KI1WcZ) containing simulations
that characterize successful tasks, failed tasks and
random start positions of the manipulator based on
the trained model.

Conclusion

This work demonstrated the applicability and
use of the DDPG algorithm and the Robotics
Toolbox for the Python environment for the classic
inverse kinematics problem. The results indicate
that the trained Agent could learn to interact with

www.jbth.com.br

JBTH 2025; (February) 73Panda Manipulator Control

the environment appropriately, reaching the goal
in a minimum number of steps and avoiding
collisions. The designed reward function,
which balances the target's proximity and the
actions' magnitude, proved effective in learning.
The simulation environment allows the necessary
skills to be developed in a safe, controlled, and
easy-to-install interface without relying on a real
robot, saving time and costs. These learnings can
be transferred and tested on real manipulators
after performing well in some situations. For
future studies and improvements, implementing
the task in a simulation environment with more
realistic physics, such as Pybullet, would help to
reduce the gap between simulation and reality.
In addition, tests with reinforcement learning
algorithms already used in other robotic tasks,
such as Proximal Policy Optimization (PPO),
could provide a solid comparative basis.

Acknowledgments

This research was carried out in partnership
between SENAI CIMATEC and Shell Brasil. The
authors would like to thank Shell Brasil Petróleo

LTDA, Empresa Brasileira de Pesquisa e Inovação
Industrial (EMBRAPII) and Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis (ANP)
for their support and investments in RD&I.
investments in RD&I.

References

1. Kroemer O, Niekum S, Konidaris G. A review of robot
learning for manipulation: Challenges, representations,
and algorithms. The Journal of Machine Learning
Research 2021.

2. Elguea-Aguinaco I, Serrano-Muñoz A, Chrysostomou
D, Inziarte-Hidalgo I, Bogh S, Arana-Arexolaleiba, N.
A review on reinforcement learning for contact- rich
robotic manipulation tasks. Robotics and Computer-
Integrated Manufacturing 2023;81:102517,2023.

3. Liu R, Nageotte F, Zanne P, de Mathelin M, Dresp-
Langley B. Deep reinforcement learning for the control
of robotic manipulation: A focussed mini-review.
Robotics 2021;10:22. doi:10.3390/robotics10010022.

4. Craig JJ. Introduction to Robotics: Mechanics and Control.
Pearson/Prentice Hall, 2005.

5. Corke P, Haviland J. Not your grandmother's toolbox-
The Robotic's Toolbox reinvented for Python. Proc.
ICRA 2021.

6. Akiba T, Sano S, Yanase T, Ohta T, Masanori K. Optuna:
A Next-generation Hyperparameter Optimization
Framework. In KDD 2019.

