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This work investigates the application of Principal Component Analysis (PCA) to enhance the performance of 
a neural network regression model for water quality forecasting in intensive aquaculture. The dataset from an 
intensive cultivation study includes daily readings of controlled pond biochemical parameters. The standard 
and PCA-enhanced models had their performance evaluated based on the MSE, MAE, and R². The results 
demonstrate that the model incorporating PCA outperformed the standard model. The PCA model achieved 
lower training and testing MSEs, with a notable reduction in MAE. These findings highlight the effectiveness 
of PCA in improving the accuracy and efficiency of neural network models by reducing dimensionality and 
emphasizing the most informative features.
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In aquaculture, water quality forecasting has 
become an important area of research, especially 
for high-density cultivation methods such as 
semi-intensive and intensive systems. Predicting 
water quality parameters helps maintain optimal 
conditions for marine life, which is essential for 
sustainable aquaculture practices [1]. This approach 
often relies on artificial intelligence (AI) algorithms 
that use biochemical measurements to predict other 
critical parameters, such as dissolved oxygen and 
pH [2].

Principal Component Analysis (PCA) is a 
widely used statistical method for dimensionality 
reduction and feature extraction in neural network 
(NN) training datasets. This matrix-based technique 
transforms the data into a new feature space, 
retaining the essential characteristics while 
enabling a reduction in the number of features. This 
transformation can lead to more efficient models, 
particularly useful in scenarios with memory and 
processing constraints, as it enables a more compact 
and representative data representation [3].

This work explores the application of PCA in 
improving the performance of a regression neural 
network model for water quality forecasting. 
Specifically, it investigates two models: a typical 
neural network regression model that takes 
ammonia, nitrate, and temperature as inputs to 
predict dissolved oxygen and pH levels [4] and a 
second model that applies PCA to the input data 
before training the neural network. The objective 
is to assess whether PCA can enhance the model's 
efficiency and accuracy in predicting critical water 
quality parameters in intensive aquaculture systems.

 
Theoretical Background

 
Principal Component Analysis

Principal Component Analysis (PCA) is a 
technique used in dimensionality reduction. It 
transforms a large set of variables into a new, 
smaller set known as principal components. 
These  pr inc ipal  components  are  l inear 
combinations of the original variables and 
capture the most significant patterns in the data. 
The main objectives of PCA are to:
• Preserve variance: The method ensures that the 

new components retain as much of the original 
dataset's variability.

• Eliminate redundancy: PCA can reduce 
redundancy and highlight the most important 
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features by identifying and combining correlated 
variables.

In addition to dimensionality reduction, PCA can 
be used for feature extraction. Feature extraction 
through PCA transforms data into a new set 
of features that more accurately represent the 
underlying structure by emphasizing components 
that capture the most variance. This process reduces 
noise and highlights the most important aspects, 
enhancing machine learning models' performance. 

                𝑷 = 𝑲𝑿                                                             (1)

The method achieves this through a linear 
transformation (Eq. 1), where K is a transformation 
matrix obtained by diagonalizing the covariance 
matrix of the original data set X. The new 
representation, P, retains the same dimensionality 
as the original data but orders the components by 
their contribution to total variance [5]. Typically, 
only the first few principal components are retained 
as they explain most of the variance, allowing 
the less significant components to be discarded. 
This reduces the dimensionality compared with 
the original representation and decreases the 
complexity of subsequent classification systems [6].

 
Neural Networks

Artificial Neural Networks, or simply Neural 
Networks (NN), are machine learning models 
designed to recognize patterns and make predictions 
inspired by the human brain's structure and function. 
These networks consist of interconnected layers of 
nodes, known as neurons, that process input data 
and generate outputs based on learned relationships 
within the data [3].

A basic neural network comprises three main 
types of layers:
• Input Layer: The input layer receives the raw 

data that the network will process. Each node 
in this layer represents a different feature or 
variable from the dataset. In this layer, no data 
computation is done.

• Hidden Layer: The hidden layers are situated 
between the input and output layers and perform 
most of the network's computation. These 
layers consist of neurons that apply weighted 
transformations to the input data, followed by 
an activation function. NNs can have multiple 
hidden layers.

• Output Layer: As the name suggests, the output 
layers represent the last layer in the network, 
producing the prediction output.

During training, the neural network learns 
by adjusting the weights associated with each 
connection between neurons. This is achieved 
through a process known as backpropagation, 
where the model's prediction error is propagated 
backward through the network, updating the 
weights to minimize the error. This iterative 
process continues until the network's predictions 
are sufficiently accurate [7].

 
Materials and Methods

The data used for this demonstration were 
collected from an intensive tilapia cultivation study 
at the aquaculture research site of Fazenda Oruabo 
in Santo Amaro, Bahia. The cultivation occurred 
from July 30th, 2018, to December 11th of the 
same year in a controlled tank exposed to sunlight, 
with artificial oxygenation and a regular feeding 
schedule. The dataset includes daily readings of 
dissolved oxygen, pH, temperature, ammonia, and 
nitrite at 8:00 am each morning. The dataset had 
134 samples with a 70%, 15%, and 15% split for 
training, validation, and testing, respectively.

Initially, a network was designed to take raw 
temperature, ammonia, and nitrite samples as input 
to forecast oxygen and pH values. Following this, a 
new model will achieve the same forecasting task and 
be trained using the same raw data but preprocessed 
with PCA. Figure 1 shows the component analysis 
referring to the object in evaluation, where the first 
component represents 65.98% of the total variance, 
the second one is 28.25%, and the last is only 5.77%. 
Removing the third component would not severely 
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disturb the system's variance in that context. This is 
important during the NN training, where, after the 
preprocessing, this component could be removed to 
reduce the model's input dimensions.

The trained models were feedforward neural 
networks with four hidden layers, each consisting 
of 128 and two output nodes. The ReLU (Rectified 
Linear Unit) activation function was used, and the 
Adam optimizer was employed for backpropagation 
with a 0.001 learning rate.

The models' training performance was evaluated 
using mean squared error (MSE) as the loss function 
and mean absolute error (MAE) as a secondary 
metric. In contrast, their real-world performance 
was assessed using MSE and the coefficient of 
determination (R²).

MSE measures the average squared difference 
between the predicted and actual values, indicating 
how close the model's predictions are to the valid 
values. R² represents the proportion of the variance 
in the dependent variable explained by the model's 
independent variables. A higher R² value indicates 
that the model explains a more significant portion 
of the variability in the data, demonstrating a better 
fit [8].

All the development was executed on Google's 
Colab platform, utilizing a cloud-based Linux 

environment with 12GB of RAM, and implemented 
using TensorFlow and the Keras API.

 
Results and Discussion

The standard neural network regression model 
and the model with PCA-applied inputs were trained 
for 400 epochs as performance improvements 
plateaued beyond this point. The training history 
illustrates the progression of training loss, validation 
loss, training mean absolute error, and validation 
MAE throughout the training process.

 
Analysis of Training and Validation Loss

Figure 2 shows that the training and validation 
loss decreased significantly during the initial 
epochs and stabilized as training progressed. 
The training loss converged to around 0.78, 
while the validation loss reached a similar 
level. The gap between training and validation 
loss suggests that the model generalizes well 
to unseen data with minimal overfitting. 
The training and validation MAE followed a 
similar trend to the loss values, with both metrics 
decreasing over time. The training MAE decreased 
steadily to approximately 0.40, while the validation 

Figure 1. Explained variance for each component.
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Figure 2. Model training Loss and MAE.

MAE also showed a steady decline, indicating good 
predictive performance.

In Figure 3, the training and validation loss 
started at higher values than the standard model, 
reflecting the initial higher error. However, 
both losses decreased rapidly and converged 
to lower values, around 0.38, suggesting better 
performance. The close superposition of the 
training and validation loss curves indicates 
minimal overfitting and good generalization. 
The training and validation MAE also started at 
higher values than the first model but presented a 
faster stabilization profile. Both metrics reached 
approximately 0.26, with the validation MAE 
closely following the training MAE curve, 
further indicating strong model performance and 
generalization.

  
Analysis of Testing Results

Table 1 summarizes the test performance 
metrics for both the standard neural network model 
(without PCA) and the model incorporating PCA. 
Model Training Metrics

• Without PCA: The model achieved a training 
MSE of 0.7849 and a training MAE of 0.4042.

• With PCA: The PCA model demonstrated 
improved training performance, with a 

significantly lower training MSE of 0.3887 and 
MAE of 0.2605.

Testing Metrics for Oxygen Prediction

• Without PCA: The testing MSE for dissolved 
oxygen was 0.3998, with an R² value of 0.0248, 
indicating poor predictive accuracy and low 
variance explanation.

• With PCA: The PCA model achieved a notably 
lower testing MSE of 0.2148 for oxygen 
prediction, with an R² value of 0.4758. This 
substantial increase in R² indicates that the 
PCA model discriminates more of the variance 
in the oxygen data, leading to more accurate 
predictions.
 

Testing Metrics for pH Prediction

• Without PCA: The testing MSE for pH prediction 
was 0.1551, with an R² value of 0.0601.

• With PCA: The PCA model showed a significant 
improvement, with a testing MSE of 0.0562 and 
an R² value of 0.6591. This indicates a much 
better fit and higher accuracy in predicting pH 
levels.

Figure 4 and Figure 5 display the test outputs 
for both scenarios, showing that the enhanced 
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Figure 3. Model training Loss and MAE with PCA.

Table 1. Results comparison.

Standard Model PCA Model
Model Training MSE 0.7849 0.3887 
Model Training MAE 0.4042 0.2605
Oxygen Testing MSE 0.3998 0.2148
Oxygen Testing R² 0.0248 0.4758
pH Testing MSE 0.1551 0.0562
pH Testing R² 0.0601 0.6591

Figure 4. Standard model test results.
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Figure 5. PCA model test results.

model provides a better fit. This is evidenced by 
the prediction graph shapes, which resemble the 
expected output more closely than the standard 
model.

 
Comparative Analysis and Discussion

The PCA-applied model significantly reduced 
training and validation losses more than the 
standard model. The minimal gap between training 
and validation losses suggests that the PCA model 
generalizes better, likely due to the reduced 
dimensionality and elimination of redundant 
information, which helps mitigate overfitting.

The test MSE and R² metrics confirmed the 
superior performance of the PCA model when 
compared to the standard model, with lower errors 
and a higher proportion of explained variance. This 
indicates that PCA effectively enhanced the model's 
ability to predict dissolved oxygen and pH levels 
from the input parameters.

 
Conclusion

The findings from this work underscore the 
importance of feature extraction techniques like 
PCA in enhancing the performance of neural 
network models, even in non-high-dimensional 
datasets like the one presented. By reducing noise 
and emphasizing the most informative aspects of the 

data, the method has proven to be a valuable tool 
in improving both the accuracy and efficiency 
of the built predictive model compared with its 
standard counterpart.

Moreover, investigating the impact of these 
techniques in different aquaculture environments 
and with various water quality parameters could 
provide more generalizable insights. It would also 
be beneficial to explore real-time implementation 
and the computational trade-offs associated with 
these advanced preprocessing methods, particularly 
in resource-constrained settings.
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