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This work proposes an innovative method for optimizing Automated Trading Systems (ATS) portfolios with 
advanced Deep Reinforcement Learning (DRL) techniques. The algorithms A2C, DDPG, PPO, SAC, and TD3 
are assessed for their ability to learn and adapt in volatile market conditions. The main goal is to enhance ATS's 
risk control and operational efficiency using data from the Brazilian stock market. DRL models outperformed 
traditional benchmarks by offering better risk management and risk-adjusted returns. The findings demonstrate 
the potential of DRL algorithms in complex financial scenarios and lay the groundwork for future research on 
integrating machine learning in quantitative finance.
Keywords: Computational Finance. Machine Learning. Reinforcement Learning.
 

Reinforcement Learning (RL) has emerged as 
a powerful tool for tackling challenges in various 
areas, including real-time decision-making and 
stock market predictions. In RL, an agent learns 
to maximize rewards by interacting with the 
environment, making it promising for financial 
applications, such as automated trading [1].   
ATS (Automated Trading Systems) uses algorithms 
to make buy-and-sell decisions based on real-time 
market data. However, volatile markets present 
risks, requiring constantly optimizing these systems 
[2]. The application of RL in these models offers 
an adaptive approach, allowing greater flexibility 
and efficiency in trading.  

Moreover, RL stands out by eliminating the 
need for intermediate predictions and dynamically 
adapting to market changes. Recent studies 
demonstrate that RL outperforms traditional 
approaches in profitability and effectiveness, 
proving to be a robust technique in areas such as 
high-frequency trading and portfolio management 
[3]. Studies show that these strategies surpass 
traditional approaches regarding profitability and 
effectiveness [1,4,5].  

This study aims to explore the optimization of 
RL models in an ATS portfolio, comparing them 
with the traditional approach without optimization 
and market indices to verify the advantages and 
limitations of RL in risk control.

  
Materials and Methods

This section outlines the methods employed 
in the study to thoroughly evaluate and compare 
the performance of different trading strategies. 
It includes a detailed description of the dataset, 
the preprocessing steps, the approach to portfolio 
optimization using RL, the proposed environment 
for trading simulations, and the training process of 
the DRL (Deep Reinforcement Learning) agents.

 
Dataset

The algorithms are applied using the FinRL 
library, which specializes in DRL for automated 
stock trading [6]. For optimization, backtests are 
performed, which consist of simulations based on 
historical data of how a proposed portfolio would 
have behaved if it had been implemented over a past 
period. Based on this, backtests comprise historical 
strategy data and daily returns of the Brazilian Stock 
Index, IBOVESPA. 

Each trade involves two mini contracts of the 
IBOVESPA index (WIN) or USDBRL (WDO), 
with the historical data covering 20,644 trades. 
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In total, 26 strategies are considered, with 
18 applied to WIN contracts and 8 to WDO 
contracts. These strategies include both trend-
following techniques and oscillators, and except 
for one strategy, all trades belong to the day trade 
category. These day trade strategies use 15 and 
20-minute timeframes, allowing granular analysis 
and rapid execution of operations throughout the 
day. Using short timeframes is fundamental to 
capturing intraday price movements and taking 
advantage of profit opportunities in periods of 
high volatility [7]. 

The finance library is used to obtain data from 
the main Brazilian stock market index, IBOVESPA, 
through the Exchange Traded Fund (ETF) BOVA11, 
which aims to replicate the performance of the 
IBOVESPA, representing the other dataset to be 
used as a backtest of trading performance. The 
data is accessed from June 6, 2018, to November 
11, 2019. 

The diversity of metrics allows the application 
of technical analysis techniques and the simulation 
of backtests to evaluate the historical performance 
of the proposed strategies.

 
Data Preprocessing

The initial historical dataset consists of detailed 
records of operations, including the type of 
operation (buy or sell), dates, entry and exit prices, 
results in terms of profit or loss, traded volumes, 
and the identification of the ATS involved.  
After the entire process, the generated dataset 
includes the date, strategy name, and daily 
operation profit (or loss) expressed in financial 
amounts. The column "data" is renamed to 
"date" to standardize the column names. 
Next,  a transformation is  performed via 
DataFrame to convert its wide format to a 
long format, where each row represents the 
profit for a specific date and ATS, indicated 
by the columns "close" and "tic," respectively.  
In addition, technical indicators are calculated 
to enhance analyses and assist in making trading 
decisions.

Portfolio Optimization using RL 

One approach to solving the portfolio optimization 
problem is using a RL agent. In this method, the 
agent develops a policy by interacting directly 
with an environment. At each time interval, the 
environment provides observations that define the 
system's state. Based on this state, the agent decides 
which action to take. After the action is executed, 
the environment returns a reward, allowing the agent 
to evaluate the effectiveness of the chosen action. 
The goal of the RL agent is to develop a policy that 
maximizes the expected sum of rewards over time 
[8]. Figure 1 illustrates the training cycle of an RL 
agent interacting with the environment.

However, the RL agent needs to handle 

Figure 1. Elements of RL [9].
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complex state spaces to be effective in portfolio 
optimization tasks. A portfolio consists of multiple 
assets, each with its series of prices, resulting in 
a highly dimensional state space. Using function 
approximations, such as neural networks (NN), 
has shown notable results in various complex tasks 
[8]. Thus, DRL algorithms are the most suitable for 
this purpose.

  
Proposed Environment

 
Thus, it is necessary to design an automated 

trading solution for portfolio allocation. Stock 
trading is modeled as a Markov Decision Process 
(MDP), involving the observation of changes 
in stock prices, taking actions, and calculating 
rewards to adjust the agent's trading strategy [8]. 
All preprocessing is performed to ensure that the 
ATS trading data aligns with this environment, 
where the agent can interact and learn, considering 
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crucial elements such as historical stock prices and 
technical indicators [6]. 

To train a trading agent with DRL, an environment 
simulates real-world trading using OpenAI Gym 
[10]. The environment initializes by loading market 
data for the current day and configuring the initial 
state, which includes the covariance matrix and 
technical indicators. At each step, the agent makes 
allocation decisions, which are normalized and 
applied to calculate the weight of each ATS in the 
portfolio. The portfolio value is updated according 
to this balancing, and the reward is defined as the 
new value. If the episode ends, accumulated and 
daily reward graphs are saved, and statistics such 
as the sharpe ratio are calculated and displayed. 
The environment is then reset for a new episode.

 
Training the DRL Agent

The implementation of the following DRL 
algorithms is based on Stable Baselines. Stable 
Baselines is a fork of OpenAI Baselines, with 
significant structural refactoring and code cleanup 
[9]. From this library, all DRL algorithms, A2C, 
DDPG, PPO, SAC, and TD3, are implemented due 
to their widespread use in finance [6,11,12].

The selection of these algorithms for an RL 
agent is based on their ability to handle continuous 
action spaces, sample efficiency, training stability, 
and robust performance. Each of these algorithms 
brings unique characteristics that can be explored 
to develop effective and adaptive trading strategies, 
allowing agents to learn and optimize their policies 
efficiently and robustly [13]. 

This splits the ATS trading data by date, with the 
training period covering September 1, 2014, to June 
5, 2018. For testing, the period from June 6, 2018, 
to November 11, 2019, is used, totaling 18,486 
trades for training and 10,218 for testing, with an 
approximate ratio of 65% and 35%, respectively. To 
generate the DRL models using the FinRL library 
[6], the training parameters for all agents must be 
imported and configured. The Optuna[14] library 
optimizes the hyperparameters to improve the DRL 
agents' performance. 

After training, each model is used to predict the 
performance of the ATS portfolio in the defined 
environment using the ATS dataset, specifically 
between June 6, 2018, and November 11, 2019. 
This generates two sets of results: daily returns 
and actions taken by the models. These results help 
evaluate the effectiveness of each model's strategy in 
terms of maximizing returns and risk management 
in a portfolio optimization environment.

  
Min-Variance

This model seeks the allocation of assets that 
results in the lowest possible volatility, given an 
expected level of return [15]. This method relies 
on the principles of modern portfolio theory, which 
promotes diversifying investments across various 
asset categories to minimize risk [16].  

In this work, the Min-Variance model is 
implemented using the PyPortfolioOpt library [17], 
which offers robust tools for financial portfolio 
optimization based on financial theories. 

Using Min-Variance as a benchmark is crucial 
because it establishes a performance reference in 
terms of minimum risk for a given level of return. 
This allows for evaluating how practical other 
portfolio optimization approaches are compared 
to a well-established model. A new approach that 
achieves superior performance to Min-Variance in 
metrics such as the Sharpe ratio can be considered 
more efficient.

  
Results and Discussion

Three distinct experiments are conducted to 
analyze the results. In the first experiment, the 
evaluation focuses exclusively on WIN contracts. 
In the second experiment, the analysis is dedicated 
to WDO contracts. Finally, in the third experiment, 
the dataset is evaluated considering both WIN 
and WDO contracts. Each experiment aims to 
explore the effectiveness of the applied strategies 
in different trading contexts. 

In each experiment, the performance of each 
DRL strategy is assessed using the performance 
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metrics mentioned earlier. Comparisons are also 
made with a baseline, represented by the non-
optimized portfolio. The choice of the DRL strategy 
is based on the highest sharpe ratio, as this index 
evaluates the relationship between accumulated 
return and the volatility of returns, providing a 
risk-adjusted measure. 

Subsequently, the selected DRL strategy 
is compared with established benchmarks to 
contextualize the results achieved. In the experiment, 
the benchmarks used are IBOVESPA and minimum 
variance in all comparisons.

  
Performance Evaluation of DRL Strategies

As mentioned, the five DRL algorithms are 
trained to find the best parameter configuration 
using the hyperparameter optimization technique 
with 50 trials. The tables present the agents with 
the best configuration obtained for each experiment, 
showing their cumulative results from June 6, 2018, 
to November 11, 2019. 

 
Performance of Strategies in the WIN Contract 

In Table 1, the annual returns ranged from 
17.2% to 19.1%, indicating robust performance 
in a relatively stable period. DDPG stood out with 
the highest annual return of 19.1%, while TD3 
presented the lowest, with 17.2%. The annual 
volatility of these strategies is consistently low, 
ranging between 4.1% and 4.8%, suggesting 
considerable stability in daily operations, with PPO 
being the method with the lowest volatility.

At the same time, the baseline maintained a 
volatility close to the group's average, at 4.2%. 

Regarding the sharpe ratio, which measures the 
relationship between return and risk, all strategies 
presented values above 3.5. The baseline had an 
excellent performance, with a sharp ratio equal 
to 3.9, just slightly below SAC, which obtained 
the highest value of  4.0. These values indicate 
excellent risk-adjusted efficiency. The maximum 
drawdown, which indicates the most significant 
drop in portfolio value before a new high, remained 
below 1.4% for all strategies and the baseline. PPO 
showed the lowest maximum drawdown of only 
1.3%. This demonstrates the notable resilience of 
the DRL models against potential market drops.  
Among the analyzed DRL models, SAC is selected 
as the most efficient due to its highest Sharpe ratio, 
which demonstrates its superiority in risk control. 

 
Performance of Strategies in the WIN Contract 

Observing Table 2, the annual returns varied 
significantly among the strategies, with DDPG 
presenting the highest return of 14.6% and PPO 
the lowest, at 11%. The annual volatilities of these 
strategies also showed variations, ranging from 
6.7% to 7.6%, with SAC presenting the highest 
volatility and the baseline matching the lowest 
observed volatility at 6.7%. This suggests that the 
baseline managed to maintain stability comparable 
to that of the more complex strategies. Regarding 
the sharpe ratio, which measures the risk-adjusted 
return, the values ranged between 1.6 and 1.9. 
DDPG led with the highest sharpe ratio, indicating 
superior efficiency in managing risk relative to the 
returns obtained. The baseline, with a sharpe ratio of 
1.6, offered reasonable efficiency, surpassing PPO 
and TD3. The analysis of the maximum drawdown 

Table 1. Performance comparison between DRL Strategies - WIN Contract.

Metrics A2C DDPG PPO SAC TD3 Baseline

Annual Return 17.4% 19.1% 17.7% 18.7% 17.2% 17.7%
Annual Volatility 4.6% 4.8% 4.1% 4.3% 4.3% 4.2%
Sharpe Ratio 3.5 3.7 3.9 4.0 3.7 3.9
Max. Drawdown 1.4% 1.4% 1.3% 1.3% 1.3% 1.3%
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shows a maximum loss in portfolio value, ranging 
between 3.7% and 5.1%, with PPO and TD3 
exhibiting the highest drawdown. 

DDPG is selected as the most efficient among 
the evaluated strategies due to its superior sharpe 
ratio, which indicates an excellent capacity for risk 
management. 

 
Performance of Strategies in Combined  WIN and 
WDO Contracts 

Table 3 shows that the annual returns of the 
strategies ranged from 13.5% to 17.6%. SAC 
achieved the highest annual return, while A2C 
presented the lowest annual return. The baseline 
obtained a return of 15.7%, surpassing A2C and 
positioning itself competitively among the other 
DRL strategies. Regarding annual volatility, the 
values ranged between 3.8% and 4.4%, with SAC 
again presenting the lowest value, where lower 
volatility implies lower risk.

The sharpe ratio of the strategies varied from 2.9 
to 4.2, indicating the effectiveness of SAC, which 
recorded the highest value, in maximizing return 
per unit of risk. The baseline achieved a ratio of 3.7, 
showing robust performance, just slightly below 

PPO and TD3. In terms of maximum drawdown, 
all strategies, including the baseline, demonstrated 
significant resilience with a maximum drawdown 
between 1.2% and 1.4%, indicating their ability to 
significantly minimize potential losses during the 
evaluated period.

  
Comparison with Benchmarks  

This section presents the results of applying 
the DRL methods compared to their respective 
benchmarks involving the WIN, WDO, and 
combined contracts.  

 
Comparison in the WIN Contract Experiment

As presented in Table 4, SAC recorded an 
annual return of 18.7%, positioning itself below 
IBOVESPA, which had a return of 28%, and Min-
Variance, with 22.8%. The annual volatility is 
considerably lower for SAC and Min-Variance than 
IBOVESPA, which presented a high volatility of 
21.2%. The sharpe ratio is superior for Min-Variance, 
achieving a value of 5.2, indicative of exceptionally 
efficient risk management. SAC also showed 
efficiency with a ratio of 4.0, while IBOVESPA 

Table 2. Performance comparison between DRL Strategies - WDO Contract.

Metrics A2C DDPG PPO SAC TD3 Baseline

Annual Return 12.2% 14.6% 11.0% 14.4% 11.3% 11.2%
Annual Volatility 7.1% 7.2% 6.7% 7.6% 6.9% 6.7%
Sharpe Ratio 1.7 1.9 1.6 1.8 1.6 1.6
Max. Drawdown 3.7% 4.1%v 5.0% 4.7% 5.1% 3.7%

Table 3. Performance comparison between DRL Strategies - WIN and WDO Contract.

Metrics A2C DDPG PPO SAC TD3 Baseline

Annual Return 13.5% 15.5% 16.0% 17.6% 16.9% 15.7%
Annual Volatility 4.3% 4.4% 4.0% 3.8% 4.3% 4.0%
Sharpe Ratio 2.9 3.3 3.7 4.2 3.7 3.7
Max. Drawdown 1.2% 1.4% 1.2% 1.2% 1.3% 1.3%
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had the lowest value of 1.3, reflecting higher 
relative risk to the returns generated. The maximum 
drawdown is considerably lower for SAC and 
Min-Variance than IBOVESPA, which experienced 
a significant maximum drawdown of 11.4%.  
Regarding annual return, expressed as a 
percentage, IBOVESPA led with 28%, followed 
by Min-Variance with 22.8% and SAC with 
18.7%. As shown in Table 4, these results 
highlight the differences in investment strategies,  
where IBOVESPA provides higher total returns but 
with considerably higher risks. 

 
Comparison in the WDO Contract Experiment

According to the data in Table 5, DDPG presented 
an annual return of 14.6%, positioning itself among 
the lowest return values when compared with 
IBOVESPA, which had a significant return of 28%, 
and Min-Variance, with returns of 11.3%. The annual 
volatility of DDPG is 7.2%, demonstrating more 
excellent stability compared to IBOVESPA and 
comparable to Min-Variance with 7.3%. Regarding 
sharpe ratio, DDPG achieved 1.9, superior to 
IBOVESPA with 1.3, but inferior to Min-Variance 
with 1.5. The maximum drawdown analysis revealed 

that DDPG had a drawdown of 4.1%, significantly 
lower than IBOVESPA and comparable to Min-
Variance with 4.5%. This highlights the ability of 
DDPG and Min-Variance to limit potential losses 
more effectively than the more volatile market indices.  
The analysis of the results in Table 5 evidences the 
efficiency of DDPG, even when compared with 
IBOVESPA, highlighting its ability to capitalize 
on market opportunities compared to traditional 
benchmarks and minimum variance.

  
Comparison in the Combined WIN and WDO 
Contracts Experiment

Table 6 shows that SAC achieved an annual 
return of 17.6%, lower than IBOVESPA, which 
registered 28%, and slightly below Min-Variance 
with 21.1%. Despite the lower annual return, SAC 
demonstrated an extremely low annual volatility of 
3.8%, equivalent to Min-Variance and much below 
IBOVESPA's 21.2%. This low volatility indicates 
more excellent stability of SAC and Min-Variance 
compared to the more volatile IBOVESPA. The 
sharpe ratio of SAC is 4.2, reflecting high efficiency 
in adjusting return for the risk taken, although Min-
Variance presented a still higher ratio of 5.

06/06/2018 to 11/11/2019 SAC IBOV Min-Variance

Annual Return 18.7% 28% 22.8%
Annual Volatility 4.3% 21.2% 3.9%

Sharpe Ratio 4.0 1.3 5.2
Max. Drawdown 1.3% 11.4% 1.1%

Table 4. The Best Agent: IBOVESPA and Min-Variance - WIN Contract.

06/06/2018 to 11/11/2019 SAC IBOV Min-Variance

Annual Return 14.6% 28% 11.3%
Annual Volatility 7.2% 21.2% 7.3%

Sharpe Ratio 1.9 1.3 1.5
Max. Drawdown 4.1% 11.4% 4.5%

Table 5. The Best Agent: IBOVESPA and Min-Variance - WDO Contract.
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Table 6. The Best Agent: IBOVESPA and Min-Variance - WDO Contract.

06/06/2018 to 11/11/2019 SAC IBOV Min-Variance

Annual Return 17.6% 28% 21.1%
Annual Volatility 3.8% 21.2% 3.8%

Sharpe Ratio 4.2 1.3 5.0
Max. Drawdown 1.2% 11.4% 1.1%

Acc. Portfolio Value 26.6% 41.8% 31.1%

Figure 2. Cumulative results of SAC, Min-Variance, and IBOVESPA.

On the other hand, IBOVESPA, with a sharpe 
ratio of 1.3, showed lower efficiency under the 
same metric. The maximum drawdown, which 
measures the most significant drop in portfolio 
value before a new high, is only 1.2% for SAC and 
1.1% for Min-Variance, significantly lower than 
IBOVESPA's 11.4%. This result emphasizes the 
robustness of SAC and Min-Variance in terms of 
risk management and loss limitation. 

According to Table 6, regarding the final 
accumulated portfolio value, SAC increased 26.6%, 
compared to 41.8% of IBOVESPA and 31.1% of Min-
Variance. Although IBOVESPA offered a higher total 
return, it came with considerably higher risks. Notably, 
the IBOVESPA index shows a significant recovery 

from mid-2019, surpassing the other strategies in 
the last quarter of the observed period, highlighting 
its capacity for recovery after downturns. The graph 
in Figure 2 shows that the SAC strategy achieved a 
significant sharpe ratio with low volatility, as desired.

The results illustrate the diversity of performance 
between different investment strategies, especially 
in volatile contexts. RL-based strategies show the 
potential to outperform traditional benchmarks 
like IBOVESPA in certain periods, although there 
are significant variations among them in terms 
of return and risk. Min-Variance, while offering 
the lowest volatility, also provides the lowest 
returns, confirming its suitability for investors who 
prioritize capital preservation over growth. 
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Conclusion

This study presented an innovative approach 
to optimizing ATS system portfolios with DRL 
algorithms, with a specific focus on risk control 
in highly volatile market environments. The DRL 
techniques, particularly the DDPG and SAC 
algorithms, demonstrated a notable ability to learn 
and adapt trading strategies in real-time, optimizing 
returns while efficiently managing the associated 
risks and outperforming the baseline in several 
aspects. 

The results indicate that DRL can significantly 
surpass traditional trading methods, such as 
heuristic-based or even other quantitative models 
that do not incorporate continuous learning and 
adaptation. The ability to process and react to 
market conditions in real time, learning from 
past interactions without explicit predictions, 
makes DRL-based systems promising tools for 
modernizing financial trading practices. 

This work demonstrates the effectiveness of DRL 
models in reducing risks and optimizing portfolio 
performance and points to the potential of applying 
these techniques in other financial areas, indicating 
a promising field. Future research could explore 
integrating RL techniques with other data types, such 
as macroeconomic signals or sentiment analysis, to 
develop even more robust and adaptive systems.  
Therefore, applying advanced RL techniques, 
such as DRL in finance, represents a promising 
and innovative direction with substantial 
implications for the theory and practice of 
investment management and market operations.  
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