
www.jbth.com.br

369

Received on 28 September 2024; revised 18 November 2024.
Address for correspondence: Eduardo Menezes de Souza 
Amarante. Av. Orlando Gomes, 1845, Piatã. Zipcode: 41650-
010. Salvador, Bahia, Brazil. E-mail: eduardo.amarante@
fbter.org.br.

J Bioeng. Tech. Health                          2024;7(4):369-374
© 2024 by SENAI CIMATEC. All rights reserved.

Application of a Preproceessing Pipeline to VIS-NIR Data for Predicting Soil Nutrient 
Concentration Values

Eduardo Menezes de Souza Amarante1*, Julian Santana Liang1, Carlos Alberto Campos da Purificação1, Rômulo 
Alexandrino Silva1

1Department of Software, SENAI CIMATEC University; Salvador, Bahia, Brazil
 
This paper compares the impact of each preprocessing step in predicting soil nutrient concentration values 
using the partial least squares technique (PLS). The preprocessing pipeline comprises log transformation of the 
output variable, determination of the optimal number of components, and feature engineering. An increase in 
the coefficient of determination (R²) and an improvement in model stability were observed.
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Standard procedures for measuring soil 
properties are time-consuming, complex, and 
expensive. Therefore, an analytical technique 
that is fast, precise, and affordable is necessary to 
determine soil fertility levels.

The conventional spectroscopic modeling 
procedure requires the pretreatment of soil samples, 
such as drying and sieving, before scanning with a 
spectrophotometer [1]. Near-infrared spectroscopy 
(NIR) has been widely used to meet these needs. 
In addition, it can analyze many constituents 
simultaneously, making it a viable alternative to 
conventional laboratory analyses for assessing and 
monitoring soil quality [2-5].

He and colleagues [6] predicted levels of 
nitrogen (N), phosphorus (P), potassium (K), soil 
organic matter (OM), and pH content from NIR 
spectroscopy data. Wetterlind and colleagues [7] 
determined the soil texture, SOM, total N, pH 
and plant-available P, K and Mg from visible and 
near infrared reflection. Jin and colleagues [8] 
tested twenty-nine preprocessing combination 
techniques with VIS-NIR data of yellow loam 
samples to find the best combination for predicting 
potassium levels.

This research aimed to determine whether 
the chained processing techniques improve the 
performance of the partial least squares regression 
model. The models were evaluated using the 
coefficient of determination (R²) and root mean 
squared error (RMSE).

 
Materials and Methods

 
Materials

In total, 420 soil samples were collected 
from five soil classes at two depths: 0- 20 cm 
and 20-40 cm, with 210 samples for each depth. 
The collected samples were dried at room 
temperature for seven to fifteen days. Before 
absorbance measurement, the soil samples were 
ground and sieved using a 2 mm mesh size to 
remove the particle effect size on reflectance 
spectra.

The spectrometer used was a FieldSpec 3, 
with a spectral range between 350 and 2500 
nm, a resolution of 8 nm, and a precision of +/- 
1 nm. A Spectralon ceramic plate was used to 
calibrate the device before each measurement. 
Each soil sample was measured 30 times, 
and the mean spectrum for each sample was 
calculated.The mean reflectance values were 
converted into absorbance measures using 
the formula log(1/R), where R represents the 
reflectance. The concentration values of boron 
were extracted using Mehlich-1 extraction, 
measured in mg/dm³.
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Exploratory Data Analysis

Initially, we conducted an exploratory data 
analysis on the entire dataset to identify patterns 
in the input and output variables. Figure 1 shows 
the distribution of nutrients with the outliers 
highlighted.

We  performed  a  descriptive statistic of the 
nutrient values to obtain more precise information 
about the dataset. Table 1 shows the number of 
samples, minimum and maximum values, mean, 
median, and standard deviation. The distribution 
curve is right-skewed, with values concentrated 
near zero. Therefore, we applied an asymmetrical 
correction with log(1+x). Figure 2 shows the 
distribution of B values before and after the 
correction.

Figure 3 illustrates the average absorbance 
signal across the entire spectrum. In this picture, 

Figure 1. Statistical analysis of boron nutrient. 

On the left, the boxplot shows the outliers values with concentration values above 2.76875 mg/dm³. 
In the middle, the scatterplot illustrates how the concentration values are distributed according to the 
dataset indexes. On the right, we have the histogram of the concentration values.

Table 1. Stats of nutrient concentration values.

it is possible to identify the absorption region of 
mean peaks.

During the data exploration analysis for VIS-
NIR data, we identified some records with a 
coefficient of absorption more significant than 
1, which lacks physical meaning. A shift in 
absorbance values could correct them, but we kept 
them. We plotted the distribution curve from each 
input variable and realized that all of them are 
nearly bell-shaped, as shown in Figure 4. These 
outliers were kept, avoiding data shortage.

 
Pipeline

Before applying the processing pipeline, we 
randomly separated eighty-four soil samples 
to constitute the testing dataset, ensuring they 
were excluded from all preprocessing steps. The 
remaining dataset was split into training and 
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Figure 2. Correctness of distribution with log transformation applied. The dotted and dashed lines 
represent the median and mean values of distribution, respectively.

Figure 3. NIR spectrum mean.

Figure 4. Distribution of absorption coefficients at 550 nm wavelength.
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validation datasets, with 252 samples allocated 
for training, 84 for validation, and 84 for testing, 
respectively.

According to Figure 5, the pipeline starts with 
the baseline model, followed by applying three 
different preprocessing techniques. After each 
step, the coefficient of determination (R²) and the 
root mean square error (RMSE) were calculated 
on the validation dataset, allowing us to assess 
the impact of each preprocessing step on the 
model's performance. Each step following the log 
transformation in this pipeline can be seen as an 
additional preprocessing layer sequentially added 
as the pipeline progresses. As a result, four different 
models were produced and will be evaluated using 
the testing dataset. Table 2 outlines the processing 
layers at each step. K-fold cross-validation with 
ten folds was applied to determine the number of 
components optimally.

The PLS regressor used the resulting value to 
obtain the R² and RMSE error. This value was 
then carried forward through the subsequent steps 
of the pipeline. The pipeline ends with a statistical 
feature engineering process applied to each row 
in the dataset, incorporating features such as Q3/
Q1, Q3 x Q1, number of peaks, kurtosis, skew, 
Q1, mean, minimum, and maximum values. It's 
important to note that the outliers in the output 
variables, as shown in Figure 1, were not removed.

After each step, the models were evaluated 
using the validation dataset, allowing their results 
to be compared.

 
Results and Discussion

Partial least squares regression analysis results 
for the dry soil samples for boron determination 
(Table 3). The R² values in the validation dataset 

Figure 5: Pipeline flows.

Table 2. Chained pipeline processing.

Baseline Step 01 Step 02 Step 03

Baseline
n_components=5

log(1+x)
transformation

Optimal
determination of
n_components

Feature
Engineering

R and RMSE
2

R and RMSE
2

R and RMSE
2

R and RMSE
2

Dataset

Steps
Processes

Log N components optimization Feature Engineering

Step 1 x
Step 2 x x
Step 3 x x x
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for each step were 0.4937, 0.5008, 0.6304, and 
0.6623, showing a relevant improvement. The 
models fitted with the entire dataset were tested 
on an unknown testing dataset. In the testing 
dataset, the coefficients of determination were 
0.6150 for baseline, 0.6091 for step 01, 0.7175 
for step 02, and 0.7067 for step 03, respectively. 
Figure 6 shows the statistical analysis of the 
baseline and step 03 regression residuals from 
the testing dataset. After passing through the 

entire pipeline, the residuals produced follow a 
normal distribution.

 
Conclusion

The preprocessing techniques applied in the 
dataset produced a relevant improvement in 
RMSE and R² metrics, starting with R² = 0.6150 
and RMSE = 0.4454 mg/dm³ for the baseline 
model and ending up with R² = 0.7067 and RMSE 

Table 3. Partial least squares result of the dry soil for validation and testing datasets.

Steps
Validation Test

R² RMSE R² RMSE

Baseline 0.4937 0.4525 0.6150 0.4454
Step 1 0.5008 0.4493 0.6091 0.4489
Step 2 0.6304 0.3866 0.7175 0.3816
Step 3 0.6623 0.3696 0.7067 0.3884

Figure 6. Statistical analysis of residuals produced by the regression. On the left is the baseline model, 
and on the right, after passing through the pipeline.
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equal to 0.3884 mg/dm³. The R² values obtained 
for the testing dataset were more significant 
than those for the validation dataset, but the 
RMSE error values were similar. The differences 
between R² and RMSE values obtained from 
validation and testing datasets can be explained 
by a shortage of data at certain concentration 
levels resulting from different data distributions 
on training, validation, and testing sets. The 
findings indicate that preprocessing techniques 
are crucial in producing a useful predictive model 
for soil nutrient concentration from spectral data. 
In addition, the amount of data is also a critical 
factor in the model's performance. The reduced 
dataset, particularly with limited representation at 
certain concentration levels, introduces variability 
in the model's ability to generalize across the 
full spectrum of data. With fewer data points, 
the model might be capturing noise or specific 
patterns in the validation set that do not generalize 
well to the testing set. This reinforces the need for 
a more prominent and representative dataset for 
future works.
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