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This academic study investigates the application of sizing and simulation software, such as PV*SOL and PVSYST, 
to analyze actual data collected from solar plants in Petrolina (PE), Messias (AL), and Piranhas (AL), comparing 
it with meteorological data from nearby stations. The study's objective is to assess the accuracy and effectiveness 
of these tools in implementing, testing, and monitoring solar plants. Essential factors in photovoltaic project 
design include meteorological data, site shading, module orientation, geographic location, temperature-induced 
losses, electrical components, equipment, and climate change considerations. The analysis covers January to 
December 2023, using hourly data from reliable meteorological inputs. These software tools aid in system sizing 
by incorporating multiple factors and estimating energy output, which is crucial to closely matching predicted 
energy production with actual performance. The quality of meteorological databases and mathematical models 
impacts software performance, necessitating efforts to filter, qualify, and catalog data sources. Production results 
indicated an annual output of 3,796 MWh for the Petrolina plant and 1,027 MWh for the Messias II plant, with 
measured data showing a 5% to 12% variation from estimated figures. Furthermore, the study incorporates Neural 
Designer, a machine learning-based neural network software, to conduct additional comparative analyses. The 
findings provide insights into site selection, equipment, plant characteristics, operational practices, and alignment 
of energy production with software predictions, offering recommendations for improvements and identifying 
potential locations for future solar farms.
Keywords: AI. Photovoltaic Plants. Brazil.

Photovoltaic generation (PVG) is marked by the 
inherent intermittency of solar resources, requiring 
careful management to ensure a stable electricity 
supply to the grid. Accurate PVG predictions can 
reduce the net cost of generation and contribute to 
grid security [1]. Solar forecasting minimizes the need 
for backup resources in energy imbalance markets, 
helping balance energy supply and demand [2].

Solar forecasting methods analyze the behavior 
of solar resources or PVG time series, using 
historical data from the series or other influencing 
factors to make predictions [3]. Solar forecasting 
techniques are classified into statistical, machine 
learning, physical, and hybrid approaches [4]. 
Machine learning models have gained prominence 
for hourly solar forecasting in recent years, and 
numerous studies have validated their effectiveness 
[5].

Photovoltaic plants experience predictable 
operational losses that impact performance, 
including ohmic losses in cabling [6], dust 
accumulation, light-induced degradation (LID) 
[7], and degradation over the module's lifespan, 
typically less than 1% per year [8]. Additional 
energy losses occur during the conversion from 
direct current (DC) to alternating current (AC) in 
the inverter [6].

Therefore, monitoring photovoltaic installations' 
energy output is essential to detect efficiency 
reductions caused by anticipated losses or 
environmental factors. For instance, a rainy year 
could reduce energy production due to diminished 
sunlight exposure rather than increased losses. 
Several parameters, including solar radiation on 
PV modules and ambient temperature, influence the 
energy output of a PV system [9]. Accurate, local 
data collection near the installation site is critical 
for making reliable predictions and ensuring an 
optimal return on investment [10].

Recognizing the need for metrics to improve 
efficiency and predictability in solar plants, this 
study utilizes artificial intelligence and statistical 
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and computational comparison methods to 
optimize renewable energy production and forecast 
performance. Integrating actual data with estimated 
results creates a database with diverse scenarios 
and plant types. This custom-architected software 
analyzes data through neural networks, aiding 
in predictive modeling. Over one year, the study 
provides insights that can help identify which 
locations will yield higher productivity, which 
months will generate the most energy, and much 
more, ultimately guiding investors and consumers 
on the optimal timing and location for installing 
solar power systems.

The photovoltaic cell operates based on the 
photovoltaic effect, utilizing semiconductor 
material, which has properties between a conductor 
and an insulator. Silicon, which visually resembles 
sand, is the primary semiconductor in the solar 
panels studied here. Pure silicon crystals lack free 
electrons, making them poor conductors. However, 
adding small amounts of other elements, a process 
known as doping enhances conductivity. When 
silicon is doped with phosphorus, the resulting 
material gains negatively charged free electrons, 
creating N-type silicon. Alternatively, doping with 
boron produces P-type silicon with positive charges. 
When N-type and P-type silicon are layered 
together (Figure 1), they form an electric field 

upon exposure to light, creating the environment 
necessary for the photovoltaic effect to occur. This 
effect enables the conversion of solar energy into 
electrical energy.
Types of Photovoltaic Panels

Monocrystalline Silicon (mono-Si) Cells: These 
cells use older technology but are highly efficient. 
They convert 14%–21% of sunlight into electricity. 
Their high efficiency allows for more energy 
generation per unit area, requiring less space than 
polycrystalline or thin-film cells.

Polycrystalline Silicon (poly-Si) Cells: Made from 
the same raw material as monocrystalline cells, 
poly-Si cells differ in crystal formation. They are 
produced by casting silicon into a block, making 
multiple crystals visible in each slice. This structure 
gives polycrystalline cells an efficiency of 13%–
17%, slightly lower than monocrystalline cells.

Thin-Film Cells: Thin-film technology involves 
applying a layer of material, such as cadmium 
telluride (CdTe), copper indium gallium selenide 
(CIGS), or amorphous silicon (a-Si), to a flexible 
or irregular surface. Although their efficiency is 
lower (7–13%), they are more cost-effective and 
offer greater application flexibility.

Figure 1. Schematic of the photovoltaic effect on the silicon atom.
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Components of a Solar Plant

Solar Panels: The core components that convert 
solar radiation into direct current (DC).

Charge Controllers: They regulate the charge 
in batteries, preventing overcharging or deep 
discharges and thus extending battery life.

Inverters: Often considered the "brain" of the 
system, inverters convert DC to alternating current 
(AC) and can raise voltage levels (e.g., from 12V 
to 127V). In some setups, inverters may connect to 
other generators or the grid.

Batteries: Acting as the system's "lungs," batteries 
store electricity for use when solar power is 
unavailable, such as during the night or on cloudy 
days.

Types of Photovoltaic Systems

Grid-Tied Systems: These systems connect to the 
electrical grid and can supply energy for general 
grid use. Unlike isolated systems, grid-tied systems 
do not require batteries or charge controllers, 
making them simpler and more efficient for a broad 
energy supply.

Off-Grid Systems: Isolated or autonomous, these 
systems are not connected to the grid. They directly 
power appliances and are generally designed for 
specific, local use.

Hybrid Systems: These systems combine 
photovoltaic energy with other power sources, 
such as wind turbines or diesel generators. Hybrid 
systems are versatile, as they can connect to the 
grid, operate in isolation, or be supported by the 
grid as needed.

Solar Potential in Brazil

Brazil's vast land area and extensive rooftop 
space in residential and commercial buildings, 

combined with high solar irradiance, present 
substantial potential for centralized and distributed 
solar generation. The Brazilian Solar Energy Atlas, 
published in 2017 by the National Institute for Space 
Research (INPE), indicates that the Northeast region 
has the highest average annual solar irradiation 
values (5.52 kWh/m² per day) and the lowest 
interannual variability [15]. This high irradiance, 
coupled with low precipitation and minimal cloud 
cover, especially in semi-arid areas, makes the 
Northeast a priority for solar energy investments, 
as evidenced by public and private projects.

Study Locations and Proposed Photovoltaic

Plant

This study analyzes three locations: Petrolina 
(PE), Messias (AL), and Piranhas (AL), with 
Piranhas as a potential future site for photovoltaic 
projects. The planned plant will be located 
near Petrolina in an area designated as a Solar 
Energy Research Platform. Located along the São 
Francisco River, approximately 722 km from Recife 
in Pernambuco, Petrolina is a notable center for 
tourism and agricultural exports, especially fruits 
and wines. It has robust air and road infrastructure 
(including access via highways BR-232, BR-
110, PE-360, BR-316, BR-428, and BR-122), as 
well as proximity to the Neoenergia (Companhia 
Energética de Pernambuco) 13.8kV distribution 
line, which is less than 100 meters from the project 
site at coordinates 9.39416° S, 40.5096° W.

The photovoltaic plant is situated in the São 
Francisco Pernambucano backlands, which features 
a tropical semi-arid climate (BSh). The terrain is 
flat with gently undulating features and typical 
caatinga vegetation adapted to the arid conditions. 
The soil is stony, with limestone and clay deposits. 
Historical meteorological data for the area indicate 
an annual average of 7.8 hours of sunshine per day, 
yielding approximately 5.38 kWh/m²/day (or 19.38 
MJ/m²/day) in solar irradiation, an annual ambient 
temperature averaging 26.34°C, and an average 
annual rainfall of 538.7 mm.
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Messias, located in Alagoas, spans 113.8 km² 
with a population of 17,856. The population density 
is about 156.9 inhabitants per km². Positioned 12 
km Northeast of Rio Largo, Messias is bordered by 
Rio Largo, Murici, and Flexeiras. At an elevation 
of 104 meters above sea level, Messias experiences 
a tropical, hot, and humid climate with an average 
annual temperature of 24°C and rainfall of around 
2,200 mm. The precipitation pattern is seasonal, 
with May, June, and July being the wettest months, 
while December through February are the driest.

 
Materials and Methods

 
Meteorological Data Collection Equipment (Table 1)

Critical for photovoltaic assessments, solar 
radiation data can be limited by location and 
measurement frequency. Solar radiation reaching the 
Earth's surface includes two primary components:

Direct Radiation: Sunlight that reaches the ground 
without deflection.

Diffuse Radiation: Sunlight scattered by 
atmospheric particles.

For precise solar resource assessment, both 
components are measured on inclined surfaces, 
such as photovoltaic (PV) modules. This data is 
gathered through specialized equipment, including 
pyranometers and pyrheliometers, which record 
solar radiation intensity. However, the cost of 
installing and maintaining these instruments at each 
distributed generation site is often prohibitively 
high (National Institute of Meteorology) [16].  
These include:
Heliograph: Measures the duration of direct 
sunlight exposure (Figure 2A).
Actinograph: Continuously records solar energy 
reaching the area (Figure 2B).
Pyranometer: Accumulates the total solar energy 
incident throughout the day (Figure 3).

This advanced setup enables reliable data 
collection for energy modeling, ensuring that 

photovoltaic systems are accurately sized and 
capable of meeting their energy generation goals.

A pyrheliometer (Figure 3) measures direct solar 
irradiance. Sunlight enters the device through a 
window and is directed onto a thermopile, which 
converts the heat into an electrical signal. This 
signal's voltage is then processed using a specific 
formula to determine the irradiance in watts per 
square meter (W/m²) [11-14].

Figure 2A/B. Heliograph and Actinograph.

Figure 3. Pyranometer.

BA

Table 1. Equipment present in the photovoltaic 
plant.

Instrument Quantity Variable

Anemometer 1 Wind direction 
and speed

Pyranometer 
First Class 2 Global solar 

radiation
Humidity sensor 
and temperature 1 Humidity and 

temperature
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Climatological Stations at Solar Plants

Chef has established a climatological monitoring 
platform to improve data accuracy at the solar 
plants studied. This platform contains essential 
meteorological instruments for acquiring precise 
local data (Figure 4). The station complements 
government-run facilities by providing additional 
data and enabling a comprehensive regional 
analysis of solar resources. This setup assists 
in better understanding local climate patterns, 
ensuring a more accurate assessment of solar 
energy potential and operational efficiency at the 
plant locations.

The pyranometer (Figure 5) is a device used 
to measure solar radiation on a flat surface. It is 
designed to measure the density and solar radiation 
flux (W/m2) from the above hemisphere within a 
wavelength range of 0.3 μm to 3 μm.

Other Data and Meteorological Sources

INMET (Instituto Nacional de Meteorologia) 
[15] and Partner Institutions: They provide 
access to meteorological products, allowing for 
the overlay of various data layers, such as satellite 
images, weather forecasting models, and severe 
weather alerts.

LABMET (Meteorology Laboratory): LABMET, 
the meteorology laboratory affiliated with the Federal 
University of Vale do São Francisco (UNIVASF), 
was established to support undergraduate and 
postgraduate courses. The laboratory also plays a 
crucial role in supporting agricultural activities in 
the region and providing the public with reliable 
information on weather and climate conditions. To 
achieve this, a state-of-the-art infrastructure was 
set up to monitor weather and climate variables 
and conduct agrometeorological research in the 
semi-arid region.

Global Solar Atlas (Solargis) [16]: The primary 
goal of the Global Solar Atlas is to offer quick and 
easy access to solar resource data and photovoltaic 
energy potential worldwide. It includes GIS 
layers and poster maps that showcase the resource 
potential on global, regional, and national scales. 
Other Researched and Utilized Sources

• Meteonorm (used in Pvsol and Pvsyst for 
comparison);

Figure 5. Pyranometer.

Figure 4. Chesf climatological tower.
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• Copernicus  Cl imate  Atlas  ( for  data 
comparison);

• Brazilian Solar Energy Atlas (for studies and 
analysis);

• Virtuxsolar (for observation of polarimetric 
data by latitude and longitude);

• CAMS Forecasts;
• CRESESB - Reference Center for Solar and 

Wind
• Energy Sérgio Brito;
• SUNDATA (CRESBES);
• UNESP - Agrometeorology and Solar 

Radiometry Laboratory (to observe solar 
ephemerides);

• Labren/Sonda/Redesolpe (for comparison 
studies).

Dimensioning and Simulation Software: 
To size a photovoltaic (PV) project, several 
factors must be considered, including ohmic 
losses, shading, module tilt angles, solar trajectory 
alignment, geographic location, and temperature-
related power losses, as well as other electrical 
and climatic factors. Many of these are difficult to 
predict without the aid of a reliable meteorological 
database [17].

Given the numerous variables, photovoltaic 
simulation software can assist in the system 
sizing process by factoring in the considerations 
mentioned above. Such software should produce 
accurate results, as it is crucial to have a tool capable 
of predicting energy generation that closely matches 
the actual energy produced by an installed system.

The performance of this software also depends 
on the quality of the meteorological database and 
the mathematical models it employs [18].

Some commonly used software for PV system 
sizing include PVSYST [19] and PV*SOL [20]. It 
is important to note that these are paid tools, and 
Neural Designer will also be used for machine 
learning and neural network-based analysis. These 
software packages require annual fees or fixed costs 
for each version. Studies such as those by Machado 
and colleagues [21] and Silva and colleagues [22] 
have already compared the performance of the 

software mentioned (excluding SAM) with actual 
energy generation data from photovoltaic systems 
at various Chesf (Eletrobras) facilities in Petrolina 
- PE, Messias - AL, and Piranhas - AL.

The present study aims to compare PV*SOL 
and PVSYST by comparing simulation results 
with the actual energy outputs of the respective 
photovoltaic installations. This will allow for 
assessing the software's accuracy in forecasting 
energy production relative to actual system outputs 
in solar plants and determining whether the results 
are within the limits proposed in existing literature. 
PVSYST is widely recognized in academic and 
commercial sectors, making it an essential reference 
for this study.

For statistical analysis, the percentage difference 
between measured and estimated power will be 
calculated based on basic power calculations and 
the estimates produced by each software program 
included in the study.

 
Cell Output Power

Various factors, such as cell temperature, time 
of year, wind speed, ambient temperature, and 
geographical position, complicate accurately 
determining the energy production of a photovoltaic 
cell. Additionally, the efficiency of the cell (ηcell) 
decreases with increasing cell temperature, 
which directly impacts the output power (Pcell). 
Using the Total Power of Continuous Energy 
(PTEC) method, energy production can be estimated 
by integrating instantaneous generation over time 
for the module area, applying the formulas in 
Equations 1 and 2.

Where:
• Apv or Acell = area of   the PV plate (m²);
• ηcell, i = efficiency of the PV plate (%);
• Gi = solar radiation (W/m²);
• 30 = days of a month;
• i = number of months.
 

Eq. 1

Eq. 2
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Period Analyzed, Qualification, and Data Filters

In this study, meteorological and radiation data 
were analyzed using data collected from both 
power generation and meteorological measurement 
equipment at Chesf (Eletrobras) solar plants 
involved in the research (Table 2).

The analyzed and proposed period is from 
01/01/2023 to 12/31/2023, with hourly intervals of 
01h (one hour), as made available by meteorological 
stations and downloaded from the INMET, 
LABMET system, and other meteorological data 
sources used in the study.

With a 13-hour analysis interval multiplied by 
365 days for the year 2023, we will have 4745 
data for each variant. Taking into account 7 to 8 
variables studied, this totals a coverage of 33215 
to 37960 items.

Another key aspect of the study was analyzing 
the locations of meteorological stations in relation 
to solar plants to enhance accuracy. Table 3 presents 
the respective distances.

 
Pre-treatment of Meteorological Data

It is recommended that the meteorological data 
selected undergo pre-treatment to ensure its quality 

and reliability. This process should include the 
following steps:

Time Filter: Select data from 05:00 to 18:00, 
corresponding to the solar cycle and the period of 
maximum usable radiation.

Data Cleaning: Filter out null, discrepant, and 
negative values within this time frame.

Missing Data Estimation: Apply the curve 
adjustment technique using averages for the specific 
period to estimate missing data.

File Preparation: Prepare CSV and TXT files for 
importing into the applications used in this study. 

Software Data Analysis: Some tested software 
tools include interfaces that analyze the imported 
data. 

Literature Review: Further investigation of related 
data and literature can help refine the analyzed

These tools generate logs and alert or error messages 
if null, discrepant, or erroneous data is detected. 
Sometimes, the software identifies the problematic 

Table 2. Geoclimatic information on photovoltaic plants.

Location Altitude 
(m)

Cloudiness Annual 
Average (tenths)

Rains 
(mm) Climate

Petrolina 385 0.5 430 Semiarid
Messias 104 0.5 777 Tropical Rainy
Piranhas 88 0.5 492 Tropical

Table 3. Station identification and station distance photovoltaic plant.

Location Station Chosen Distance from the Station 
by the Plant (Km)

Petrolina LABMET/CHESF 23
Messias INMET/UFAL/CHESF 12
Piranhas INMET/UFAL 4
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data, prompting the user to review and correct it. 
meteorological data source.

 
Solar Plant Location Suggestion in Piranhas (AL)

For selecting the location of the solar plant 
within the Chesf (Eletrobras) facilities' territorial 
area, the following criteria were considered:
• Proximity to Electrical Infrastructure: 

The site should be close to existing electrical 
installations within the Chesf (Eletrobras) 
network.

• Proximity to Meteorological Stations: The 
location should be near a meteorological 
station or a research center focused on 
meteorology.

• Radiation Levels and Feasibility: The 
site should have favorable radiation rates to 
implement a photovoltaic system.

• Accessibility: The site should be easily 
accessible and ideally located near a medium-
sized city, facilitating labor availability, 
construction, and commissioning.

• Educational and Research Opportunities: 
The presence of technical or higher education 
institutions nearby could provide qualified 
labor and allow the plant to serve as a reference 
for academic studies. Expanding knowledge 
areas and Chesf (Eletrobras) would benefit the 
educational institution by developing human 
capital and expertise.

 
Methodology for Location Selection

In addition to the factors outlined above, the 
Brazilian Solarimetric Atlas (Version 2000) – 
Cresesb was used, focusing on the areas of Piranhas 
(AL) and Canindé do São Francisco (SE), near the 
Chesf (Eletrobras) complex in Xingó.

Three potential points of interest were identified 
with the support of the Global Solar Atlas (Solargis) 
platform. These points were selected based on their 
distance to the local meteorological station and the 
Chesf facility (Substation SE Xingó 69 kV). They 
are referred to as Point 1, Point 2, and Point 3. 

Another critical aspect of the research was 
investigating the nearby meteorological stations, 
assessing their data collection capabilities, and 
evaluating their operational status.

 
Results and Discussion

During this work, the broad possibilities of 
using sizing, simulation, and neural network 
software for use in photovoltaic plants were 
emphasized, especially Cresp solar plants – Solar 
Energy Reference Center of Petrolina (PE), 
Messias II (AL) and as a suggestion, a possible 
design and implementation of a solar plant in the 
city of Piranhas (AL), as this location has Chesf 
(Eletrobras) facilities. 

This section addresses the methodological 
procedures for comparing and evaluating the use 
of global solar irradiation (GHI) databases obtained 
through INMET, Labmet, and other meteorological 
sources and validating their use in solar energy 
systems.

The methodology continues to obtain global 
solar irradiation data from the two databases for 
the chosen cities and compare them using graphs 
and statistical indicators. These cities were selected 
because they have local meteorological stations and 
solar plants from Chesf (Eletrobras).

As sensors are susceptible to errors, some 
radiation or meteorological information may not 
be in the bank. Therefore, a broader data search is 
carried out.

 
Measurement Data

Cresp Photovoltaic Plant – Petrolina (PE)

Data from the Cresp Petrolina solar plant were 
collected, and an online database was downloaded 
from the SCADA WEG software platform (Table 
4).
Photovoltaic Plant – Messias (AL)

In the Messias II plant, data from the GOODWE 
platform shows that the total output comes from 
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seven inverters, each with a 25 kW capacity, 
though one inverter is currently offline, resulting 
in an active output of six inverters at 100 kW 
each. According to the project’s descriptive 
memorandum and calculations (Resende [23]), 
technical specifications of the modules and inverters 
are outlined. Simulations run in PVSyst software 
(version 6.35) estimate an annual energy generation 
of 1.431 MWh for the designed system (Table 5).

Table 6. General table of meteorological data.

Jan Febr Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pe
tr

ol
in

a

Temp. °C 28 28 28 27 27 25 25 25 27 28 29 28

Rain mm 62,8 80.2 101.7 49.5 8 4.6 3 1.8 3.3 11.1 45.8 63.8

KT Index 42.4 48.9 46.8 40.6 38.6 38.2 41.3 31.3 24.6 25.4 47.4 42.9

Humidity % 58 63 67 70 64 61 60 53 48 48 50 54

Wind Km/h 23.4 21.4 20.5 20.6 22.4 23.6 25.4 26.4 25.4 24.2 22 21

M
es

sia
s

Temp. °C 26 27 27 26 25 24 23 23 24 25 26 26

Rain mm 18.1 23.2 44.5 131.3 199.8 199.6 199.2 52.7 22.7 28.2 11.4 13.3

KT Index 37.6 33 37.3 37.2 48.8 49.3 49.3 52.6 47.2 41.4 39.8 40

Humidity % 75.9 70.4 66.9 78.5 84.9 75.4 65.1 75.8 83.6 82.1 79 78.7

Wind Km/h 24.8 23.6 20.9 19.8 18.8 21 21.5 23.1 22.2 24.1 26.8 25.4

Pi
ra

nh
as

Temp. °C 29 29 29 28 26 25 24 24 26 28 29 29

Rain mm 34.3 40.4 53.3 61.8 71.3 60.3 58 27.8 14.7 12.8 22.3 38.8

KT Index 40.3 37.8 32.9 45.2 37.4 33.9 35.3 38.8 37.2 47.5 60.2 54.3

Humidity % 53.1 52.1 57.8 66.9 76.2 78.6 78.5 72.5 67.8 61.7 64.5 62.6

Wind Km/h 24.1 23.8 22.6 18.9 17.5 18.4 19.8 22.2 24.7 28.9 27.2 27.7
GHI: Global Horizontal Irradiation; LAT: Global irradiation at the tilt of the local latitude.

Table 4. Generated energy Petrolina (PE).

2020 2021 2022 2023
Real 

Energy 
(MWh)

3428.77 3822.51 3467.34 3796.64

Table 5.  Generated Energy Messias (AL).

2020 2021 2022 2023
Real 

Energy 
(MWh)

122.67 72.51 107.08 118.19

Table 6 summarizes all the meteorological 
variables used in the study and in the three locations 
observed, considering their monthly average.

In Table 7, we can observe the GHI and LAT 
values   for the studied locations. Below, we have the 
explanatory legend of these types of radiation. It is 
worth noting that in this present study, we focused on 
the two types of radiation due to their particularities 
and uses in the academic and project fields.
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Petrolina Messias Piranhas
Irrad. GHI LAT GHI LAT GHI LAT
Anual 5.76 5.78 5.22 5.22 5.47 5.47

Jan 6.38 6.00 5.87 5.53 6.31 5.94
Feb 6.16 5.96 5.83 5.64 6.06 5.86
Mar 6.02 6.03 5.84 5.85 5.97 5.98
Apr 5.24 5.44 5.06 5.25 5.32 5.53
May 4.82 5.16 4.23 4.52 4.47 4.78
Jun 4.57 4.97 3.90 4.21 4.07 4.41
Jul 4.82 5.19 4.00 4.30 4.20 4.51
Aug 5.55 5.84 4.57 4.79 4.83 5.08
Sep 6.32 6.4 5.39 5.45 5.66 5.73
Oct 6.40 6.24 5.67 5.53 5.96 5.81
Nov 6.50 6.16 6.16 5.84 6.43 6.09
Dec 6.38 5.95 6.11 5.70 6.36 5.93

Table 7. GHI and LAT comparison in the 3 locations (kWh).

We cannot forget the chosen arrangement and 
the results obtained by the Neural Network using 
the Neural Designer software (Table 8).    

Figure 6 shows a graphical representation of the 
network architecture. 

Although this paper focuses on comparisons 
between measured and estimated energy production, 
we have added a goodness-of-fit plot between the 

Table 8. Perceptron framework.

Perceptron 
Layer

Number 
of Entries

Number of 
Neurons

Activation 
Function

1 6 3 Hyperbolic 
Tangent

2 3 1 Linear

Day

Rain

Humidity

Wind

Radiation

Temperature

KT Index

Figure 6. Neural network model.

Scaling layer with 6 neurons (yellow; perceptron layer with 3 neurons (blue); perceptron layer with 1 neuron (blue; de-scaling 
layer with 1 neuron (red); bounding layer with 1 neuron (purple).
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same variables to demonstrate how well a statistical 
model fits a set of observations. Goodness-of-fit 
measures are used to measure the discrepancy 
between observed values   and expected values   under 
a probability model (Figures 7 and 8).

Table 9 below shows the data arrangement, 
number of samples, and percentages of samples 
chosen for each stage of the neural network 
calculations.

Concerning the proposed location of a plant in 
the Piranhas region (Alagoas), results from the three 
observed points are presented as follows. Another 
key aspect of the research involved identifying 
nearby meteorological stations, assessing data 
availability at these sites, and evaluating their 
operational status. To support this, the Atlas Solar 
Global platform (Solargis) was utilized, enabling 
measurement and sizing on an embedded map. 

Table 9.  Sample chart.

Petrolina Messias Piranhas % Samples

Training Samples 2697 2441 2248 60%

Selection Samples 899 813 749 20%

Test Samples 899 813 749 20%

Unused samples 0 0 0 0%

Figure 7. Estimated and measured radiation - 
Goodness of Fit Cresp Petrolina in kWh.

Using this platform, three specific points of interest 
were selected (Figures 9-11).

The website (Forensically Beta, 2024) facilitates 
uploading saved images for analysis. Once the 
image is uploaded, it appears on the main screen. 
By selecting the "Level Sweep" tab and applying 
the adjustments shown in the image below, the 
darkest points on the polarimetric map section are 
highlighted. This step helps identify areas with the 
highest irradiation levels (Figure 12).

Table 10 presents the results for the three points, 
with a particular emphasis on point 3, where the 
sample shows the best results aided by the Global 
Solar Atlas.

Tests were conducted using PVSYST, PVSOL, 
and Neural Designer software, with estimated 
radiation values calculated from both measured 
and projected data. Following this, the comparison 

Figure 8. Estimated and measured radiation - 
Goodness of Fit Messias in kWh.
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Figure 9. Point 1: Close to Canindé do São Francisco, next to the substation (SE Xingó 69 kV) - location: 
9°37'37.1  "S 37°48'41.0".                            

Distance from the fictitious photovoltaic plant Point 1, to the Inmet Piranhas A371 station, located next to UFAL Instituto 
Federal de Alagoas, Piranhas Campus: 4.90 Km.     

Figure 10. Point 2: Nearby Piranhas AL aerodrome - location: 09°34'48" s, 37°47'02  "w.

The distance to INMET PIRANHAS A371 station, located next to UFAL Instituto Federal de Alagoas, Piranhas Campus, is 
5.00 km.Distance from the Ponto 2 photovoltaic plant to the SE Xingó 69kV Chesf substation (Eletrobras): 6.00 Km.

Piranhas

Oho D'água
Do Casado

Caninde De
Sao Francisco

Piranhas

Figures 11. Point 3: Close to the Lameirão settlement in the municipality of Delmiro Golveia in Alagoas 
- location: 9°30'53.0  "S 37°58'50.0  "W.

The distance to INMET PIRANHAS A371 station, located next to UFAL Instituto Federal de Alagoas, Piranhas Campus, is 
26.22 km. Distance from the Ponto 3 photovoltaic plant to the SE Xingó 69kV Chesf substation (Eletrobras): 22.4 Km.
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Figure 12. Forensically beta site to search for points with the highest radiation.  

Index Acronym Point 1 Point 2 Point 3 Unit.
Specific Photovoltaic Power PVOUT 4.352 4.397 4.535 kWh/kWp day
Normal Direct Irradiation DNI 4.451 4.476 4.870 kWh/m2 day
Global Horizontal Irradiation GHI 5.543 5.559 5.749 kWh/m2 day
Diffuse Horizontal Irradiation DIF 2.356 2.364 2.247 kWh/m2 day
Global Irradiation Tilted at 
Optimal Angle GTI_opta 5.589 5.611 5.803 kWh/m2

Air temperature TEMP 26,9 25.8 25.9 °C
Optimal Tilt of Photovoltaic 
Modules OPTA 8 9 9 ° degrees

Terrain Elevation ELE 69 249 221 m

Table 10. Comparative data simulated by Atlas Solar Global in the 3 points. 

percentages for the total radiation measured at the 
modules' inverter were determined. Tables 11, 12, 
and 13 display these comparisons for the locations 
of Petrolina (PE), Messias (AL), and the proposed 
plant site in Piranhas (AL). Note that Piranhas 
(AL) participates only in calculations using Neural 
Designer, as it is a suggested location without direct 
measurement data.

Conclusion

The most significant challenge during this 
research was acquiring complete, cohesive, and 
high-quality data. However, success was achieved 
after an extensive review of multiple data sources, 

enabling the selection of the most reliable and 
comprehensive datasets. The data qualification 
and filtering stage followed, ensuring accuracy. 
Despite this, a lack of standardization, insufficient 
data, and inadequate meteorological stations remain 
significant issues. Many operational stations either 
do not provide all the necessary data or experience 
periods of inactivity. While Brazil boasts a network 
of meteorological stations, many regions still face 
gaps in monitoring coverage.

Three locations in the Northeast were analyzed, 
each exhibiting distinct climatic characteristics. 
For example, Messias (AL) experiences higher 
precipitation rates of 944 mm, almost double the 
averages of the other two locations: Petrolina (PE) 
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Table 11. Radiation results in software and their percentages for Petrolina in kWh.

PETROLINA in kWh

Estimated Real PVSYST PVSOL NEURAL % 
PVSYST

% 
PVSOL

% Neural 
Network

Jan 127.15 127.02 181.58 160.71 165.22 42.95 26.52 30.07
Feb 126.68 117.11 138.64 138.80 131.29 18.38 18.52 12.11
Mar 116.05 119.26 162.80 135.44 134.91 36.51 13.57 13.12
Apr 109.13 125.40 137.16 114.43 108.87 9.38 -8.75 -13.19
May 92.01 106.24 104.67 100.90 111.31 -1.48 -5.02 4.77
Jun 94.13 102.87 94.18 92.73 108.12 -8.44 -9.85 5.11
Jul 120.95 138.51 103.15 99.27 121.93 -25.53 -28.33 -11.97
Aug 131.04 138.42 123.48 124.74 144.45 -10.79 -9.88 4.36
Sep 145.51 141.72 145.49 144.91 149.25 2.66 2.25 5.31
Oct 153.65 152.26 157.89 164.36 153.34 3.70 7.95 0.71
Nov 143.21 122.05 167.90 159.40 161.71 37.57 30.60 32.50
Dec 142.47 122.97 156.94 160.81 157.18 27.62 30.77 27.82

Annual 1501.98 1513.82 1673.88 1596.51 1647.59 10.57 5.46 8.84

Table 12.  Radiation results in software and their percentages for Messias (AL) in kWh.

 MESSIAS II in kWh

Estimated Real PVSYST PVSOL Neural % 
PVSYST

% 
PVSOL

% Neural 
Network

Jan 132.84 111.65 130.40 136.47 151.38 16.79 22.23 35.59
Feb 114.73 95.96 113.10 125.10 130.31 17.86 30.36 35.80
Mar 121.97 109.10 111.10 121.59 139.15 1.83 11.45 27.55
Apr 102.57 95.93 101.90 102.14 117.04 6.22 6.47 22.01
May 92.13 89.71 88.10 90.08 105.13 -1.79 0.41 17.19
Jun 76.22 68.70 69.90 81.70 86.97 1.75 18.93 26.60
Jul 85.18 88.51 81.10 85.32 97.18 -8.37 -3.60 9.80
Aug 98.30 86.91 97.80 103.43 112.16 12.53 19.01 29.06
Sep 101.81 89.34 107.70 116.17 115.99 20.55 30.03 29.83
Oct 119.85 102.11 123.00 133.82 135.53 20.46 31.06 32.73
Nov 104.48 62.70 130.10 141.03 119.45 107.50 124.93 90.50
Dec 125.86 27.20 136.80 141.21 143.38 402.94 419.15 427.13

Annual 1275.94 1027.82 1291.00 1378.07 1453.69 25.61 34.08 41.43



www.jbth.com.br

JBTH 2024; (September) 273AI and Photovoltaic Plants

with 435 mm and Piranhas (AL) with 495 mm. The 
proximity of the São Francisco River in Piranhas 
may cause a microclimate, which could positively 
or negatively affect the data obtained.

As for temperature, the annual average remained 
consistent across all three cities, with Messias (AL) 
recording 25.16°C and Petrolina (PE) and Piranhas 
(AL) averaging around 27°C. The cloudiness index 
in Messias (AL) and Piranhas (AL) was similar at 
around 42%, whereas Petrolina had a slightly lower 
index of 39%. Regarding humidity, Messias (AL) 
had 76%, Petrolina (PE) 58%, and Piranhas (AL) 
66%. The average wind speed across all locations 
was approximately 23 m/s. These data are crucial 
for a broader understanding of the plant's potential. 
Minor shading in the study areas was noted but did 
not affect the overall results.

As observed by Iea-Pvps [24], dirt and other loss 
factors were also considered in the calculations, 
leading to an annual loss of 3% to 4%, reaching 
up to 7% in some cases, by standards set by IEA-
PVPS (International Energy Agency Photovoltaic 
Systems Programme). Regarding irradiation, higher 
values were observed at the Petrolina (PE) plant, 
with an annual average of 5.76 kWh, while Piranhas 
recorded 5.47 kWh and Messias 5.22 kWh. This 
variation in irradiation was reflected in energy 
production: Petrolina (PE) produced between 1501 
and 1673 kWh/year per m², Piranhas (AL) between 
1597 and 1796 kWh/year per m², and Messias 
(AL) between 1027 and 1453 kWh/year per m². 
When comparing measured energy production 
to estimated values, the results were positive and 
within acceptable tolerances. In Petrolina (PE), 
energy production was 5.46% higher than measured 
values in PVSOL, 8.84% higher in Neural Designer, 
and 10.57% higher in PVSYST.

The differences in Messias (AL) were more 
significant, with energy production in PVSYST 
being 25.61% higher, PVSOL 34% higher, and 
Neural Designer 41.43% higher. When accounting 
for the decrease in production during October, 
November, and December, replacing the lower 
values with historical averages, the percentage 
differences were reduced to 12.4% in PVSYST, 
20.4% in PVSOL, and 26.7% in Neural Designer.

The proposed solar plant in Piranhas (AL) 
showed promising results, with three potential 
installation sites identified: Piranhas (AL), Delmiro 
Gouveia (AL), and Canindé do São Francisco (SE). 
These sites were selected for their proximity to a 
meteorological station, the Federal University of 
Alagoas (UFAL) advanced campus, and several 
Chesf (Eletrobras) facilities.

The difference between estimated and calculated 
energy production from the software was 
approximately 11%, with the potential for further 
reduction depending on the selected installation point. 
In evaluating the software, it became evident that 
each tool has strengths and unique features.

The results were generally consistent, with 
some software offering additional functions and 
a broader database, while others required a better 
understanding of data entry and technical aspects. 
PVSOL stands out for its 3D project visualization 
capabilities, whereas PVSYST focuses more on 
technical aspects and reporting. Both software 
options offer significant flexibility in input 
parameters, including a wide range of equipment 
manufacturers in the solar energy sector, which 
aids in obtaining accurate results. PVSYST and 
PVSOL allowed testing of different module tilt 
angles, concluding that the chosen angle for the 
project is the most efficient and cost-effective. 

Table 13. Estimated radiation percentage x neural designer radiation in Piranhas plant.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Estimated 168 150,7 153,5 142,3 115,1 105,6 150,2 152,2 174,2 162,9 168,06 154,2 1797

Neural 151,4 132,9 134,1 124,3 100,6 94,98 131,2 132,9 153,4 149,3 154,91 138,1 1598

% Neural 
Network -9,86 -11,8 -12,6 -12,6 -12,6 -10,1 -12,6 -12,6 -12 -8,4 -7,82 -10,41 -11,1
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Neural Designer's application in the electrical sector 
shows promise, though it is more widely used in 
various commercial and industrial fields.

The Neural Designer yielded positive results 
in the tests conducted, though it required clean 
data with minimal discrepancies. Despite this 
initial challenge, the software demonstrated good 
performance, offering high customizability and the 
ability to predict various outputs and prognoses. 
This study provided valuable insights into the 
potential for photovoltaic energy production in the 
Northeast region of Brazil, and the findings have 
implications for future solar plant installations in 
the area.

 
Acknowledgment

The authors would like to express their sincere 
gratitude to SENAI CIMATEC for its support and 
provision of researcher resources that significantly 
contributed to the success of this project. 

Furthermore, the authors also thank the Research 
and Development Program of the Brazilian 
electricity sector regulated by ANEEL and Eletrobras 
CHESF for the financial support and all the 
employees and collaborators at Chesf (Eletrobras) 
who helped me in some way with this project. 
 
References

1.  Lima MAFB, Carvalho PCM, Fernández-Ramírez 
LM, Braga APS. Improving solar forecasting using 
deep learning and portfolio theory tntegration. Energy 
2020;195:117016.

2.  Wang GC, Ratnam E, Haghi HV, Kleissl J. Corrective 
receding horizon EV charge scheduling using short-term 
solar forecasting. Renewable Energy 2019;130:1146–1158.

3. Carneiro TC, Santos HAD, Braga APDS, Carvalho 
PCMD. Redes neurais artificiais para previsão de 
velocidade do vento: estudo de caso para Maracanaú–
CE. Congresso Brasileiro de Automática 2014.

4. Antonanzas J, Osorio N, Escobar R, Urraca R, 
Martinez-De-Pison FJ, Antonanzas-Torres F. Review 
of photovoltaic power forecasting. Solar Energy 
2016;136:78–111.

5.  Mertyagli G, Yang D, Srinivasan D. Automatic hourly 
solar forecasting using machine learning models. 
Renewable Sustainable Energy Rev 2019;105:487–498.

6. Nascimento LMA, Ferreira RAF. Otimização de 
um sistema fotovoltaico conectado à rede elétrica: 
considerações sobre a eficiência do sistema e 
análise de posicionamento. Revista de Engenharia e 
Tecnologia.v.10, N° 3. Dez/2018.

7.  Silva IND, Spatti DH, Flauzino RA. Redes neurais 
artificiais para engenharia e ciências aplicadas. 1. ed. 
São Paulo: Artliber, 2010. 

8.  Cassini DA, Oliveira MCC, Soares LG, Viana MM, Lins 
VFC, Diniz ASAC, Zilles R, Karmerski LL. Avaliação  
do desempenho da degradação de módulos fotovoltaicos 
de Si cristalino após 15 anos de exposição em campo. In: 
VIII Congresso Brasileiro de Energia Solar - CBENS, 
RS 2018.

9. Carneiro TC, Santos HAD, Braga APDS, Carvalho 
PCMD. Redes neurais artificiais para previsão de 
velocidade do vento: estudo de caso para Maracanaú–
CE. Congresso Brasileiro de Automática 2014.

10. Murat Ates A, Singh H. Rooftop solar photovoltaic 
(PV) plant – One year measured performance and 
simulations. Journal of King Saud University - Science 
2021;33(3):101361.

11. Marques ICA, Delvizio ES. Estudo de viabilidade 
técnica de microgeração residencial fotovoltaica. Revista 
Científica Multidisciplinar Núcleo do Conhecimento 
2020;5(3):166-203

12. Wang H, An C, Duana M, Su J. Transient thermal analysis 
of multilayer pipeline with phase change material. Appl 
Ther Eng 2020;165:114512.

13. Montgomery DC, Jennings CL, Kulahci M. Introduction 
to time series analysis and forecasting. ed.: John Wiley 
& Sons 2015.

14. Quadros FSD. Sistema de Divulgação de Dados 
Meteorológicos. 2005. 105 p. (Doutorado). Centro de 
Ciências Tecnológicas da Terra e do Mar, Universidade 
do Vale do Itajaí 2005.

15. Pereira EB, Martins FR, Gonçalves AR, Costa RS, Lima 
FJL et al. Atlas brasileiro de energia solar. 2a. ed. São 
José dos Campos: INPE, 2017. Available at:  http://
labren.ccst.inpe.br/atlas_2017.html . 

16. Scolar J, Martins D, Escobedo JF. Estimativa da 
irradiação total sobre uma superfície inclinada a partir 
da irradiação global na horizontal. Revista Brasileira de 
Geofísica, v.21, n.3, p.249-258, 2003.  http://www.scielo.
br/pdf/rbg/v21n3/a04v21n3.pdf. 

17. Oliveira LGM. Avaliação de fatores que influenciam 
na estimativa da geração e operação de sistemas 
fotovoltaicos conectados à rede elétrica, Tese de 
Doutorado, Universidade Federal de Minas Gerais, Belo 
Horizonte 2017.

18. Rosa VB. Aplicação Computacional para o Dimensionamento 
de Sistemas Fotovoltaicos Isolados, Trabalho de Conclusão 
do Curso, Escola Politécnica da Universidade Federal do Rio 
de Janeiro, Rio de Janeiro 2014.



www.jbth.com.br

JBTH 2024; (September) 275AI and Photovoltaic Plants

19.  Pvsyst, Photovoltaic Software features, 2023. Available 
at: https://ww.pvsyst.com/features/. 

20. Pvsol, Pv*Sol Valentim Software, 2023. Available 
at: https://valentin-software.com/en/products/pvsol-
premium/.

21. Machado CT, Miranda FS. Energia Solar Fotovoltaica: 
uma breve revisão. Rev Virtual Quim 2015;7(1):126-
143.

22. Silva JL et al. A Comparative performance of PV power 
simulation software with an installed PV plant. IEEE 

International Conference on Industrial Technology 
(ICIT), São Paulo, Brasil 2020:531-535. doi: 10.1109/
ICIT45562.2020.9067138.

23. Resende Degs M. Implantação de sistema de geração 
fotovoltaica 700kw subestação de Messias II. Recife: 
Chesf, 2021:45. 

24. Iea-Pvps, Soiling Losses – Impact on the Performance of 
Photovoltaic Power Plants  2022. Available at : https://
iea- pvps.org/ wp-content/uploads/2023/01/IEA-PVPS- 
T13-21-2022-REPORT-Soiling-Losses-PV-Plants.pdf.


