
www.jbth.com.br

37

Design, Manufacturing and Testing of a Two-Wheeled Self-Balancing Robot

Lucas Lins Souza1*, Matheus Henrique Nunes França1
1SENAI CIMATEC university Center; Salvador, Bahia, Brazil

This work presents a self-balancing robot's modeling, manufacturing, and testing. This study aimed to design
and construct a robot capable of maintaining balance while stationary and in motion, employing an effective
control strategy. The robot's design incorporates sensors, microcontrollers, actuators, and control algorithms.
The control strategy involved implementing an LQR (Linear Quadratic Regulator) controller and a Kalman
filter for state estimation. The results demonstrate the robot's ability to effectively maintain balance and navigate
flat terrain while controlled by a joystick. This study provides valuable insights into the design and control of
self-balancing robots.
Keywords: Self-Balancing Robot. LQR. Kalman Filter. Dynamic Model.

Mobile robots have garnered significant
attention and importance in today's technological
landscape. Among the diverse range of
mobile and self-balancing robots stand out due
to their myriad applications [1,2], particularly in
transportation and logistics.

The choice of focusing on self-balancing robots
for this project arises from their exceptional
mobility on flat terrains and ability to navigate
common indoor obstacles like stairs and ramps.
However, achieving this mobility requires tackling
the challenging task of maintaining balance, given
the strongly nonlinear behavior of these robots [3].

This paper presents the balancing and
teleoperation performance achieved by the
implemented control system of an original two-
wheeled self-balancing robot. A model-based
approach was adopted for the controller, with
system modeling considering the robot's dynamics
and the wheel actuators, thus eliminating the need
for dedicated joint controllers.

This project is an open-source research platform,
providing a resource for students and researchers
to delve into robotics. All software was developed
using ROS (Robot Operating System) [4], a widely

used open-source middleware for robotics to
facilitate our study.

Materials and Methods

Robot Prototype

The design of the robot drew inspiration from
the Ascento robot [5] and the work of Kollarčík
[6]. These robots feature a substantial base that
houses most of the robot's mass and two articulated
legs with two joints each, enabling complex
maneuvers such as navigating obstacles, climbing
stairs, and jumping; however, unlike these robots
that use a single servomotor per leg along with
an additional mechanism to ensure linear up-and-
down movement, a simplified design with two
servomotors was adopted for this project, similar
to the robot MABEL [7].

The Figures 1 and 2 illustrate the robot's 3D
model and genuine model. The upper part of the
robot serves as the base, housing its sensors and
electronics. An MPU6050 Inertial Measurement
Unit (IMU) was utilized in this model, directly
connected to a Raspberry Pi 4. The U2D2 board
facilitates communication via USB between
the Dynamixels and the Raspberry Pi 4. The
wheels were equipped with two Dynamixels of
the XM430-W210 model, while four MX-106
Dynamixels were used for the joints in the legs.
Powering the entire system is a 14.8-volt lithium
polymer battery (LiPO).

Received on 19 October 2023; revised 28 December 2023.
Address for correspondence: Lucas Lins Souza. Rua Embira
n° 149, Cond. Platno, ap 2801, T. Titânio, Salvador, Bahia,
Brazil. Zipcode: 41680-113. E-mail: lucaslinssouza@gmail.
com.

J Bioeng. Tech. Health 2024;7(1):37-42
© 2024 by SENAI CIMATEC. All rights reserved.

www.jbth.com.br

38 JBTH 2024; (March)Two-Wheeled Self-Balancing Robot

The Dynamic Model

A two-wheeled self-balanced robot's design,
modeling, and control have been extensively
researched and implemented. Klemm and
colleagues [5,8] constructed a self-balancing
robot that combines the efficiency of wheels with
the mobility of legs to navigate uneven terrain and
obstacles. Kim and Kwon [9] investigated and
presented the dynamic equations of the wheeled
inverted pendulum, while Kollarčík [6] designed
a wheeled leg system based on these equations.
The model utilized in this paper (1) is the one
developed in [9] using the Lagrangian method. It is
important to note that this model does not account
for the legs, so the robot was modeled as having a
fixed rod.

 (1)

 (2)

 (3)

The state vector 𝒒˙ is composed of the linear
velocity 𝒙˙, the pitch velocity 𝜽˙, and the yaw
velocity 𝝍˙. Figure 2 illustrates these variables.
The input vector 𝒖 is composed of the left and the
right wheel's motor torque 𝝉𝑳 and 𝝉𝑹, respectively.
The linearization of the system is performed by
calculating 𝑨𝒓 and 𝑩𝒓, which are the Jacobian
matrix of the system (1) concerning the state vector

𝒒𝒓 (4) and the input vector 𝒖 (3), respectively, at the
system's fixed point (zero for all states). The pitch
angle is added in 𝒒𝒓 (different from 𝒒˙) because it is
also desirable to control the pitch angle of the robot.
This model is also in continuous time, so it must be
discretized to be implemented in a microcontroller.
The discretization was performed by applying the
zero-order hold [10] in 𝑨𝒓 and 𝑩𝒓 with a sampling
period of 0.0125 seconds (80 Hz).

(4)

The mathematical model of the robot relies
on wheel torques as inputs, while the actuators
are controlled using Pulse Width Modulation
(PWM). Therefore, it is necessary to establish a
relationship between these two variables to send
the correct command directly to the motors rather
than to a low-level joint controller. Moreover, the
accurate actuators exhibit dynamics that the robot
model does not consider. By integrating the robot's
dynamic model with the motor's dynamic model, we
can more accurately represent the system's overall
dynamics.

The dynamics of the wheel motors can be
represented as a first-order system, with the PWM
duty cycle as input and torque as output. It is
important to note that the wheels' torque serves as
both the input for the robot model and the output

Figure 1. The robot's designed and manufactured
model.

Figure 2. Robot axis and state variables.

www.jbth.com.br

JBTH 2024; (March) 39Two-Wheeled Self-Balancing Robot

for the motor model. The state vector of the final
model comprises the states of both the robot and
the motor model. However, the output vector only
includes the outputs of the robot model because the
motor model's outputs are not directly measurable.
The final robot model is depicted in Equation (5),

(5)

where 𝟎𝒊𝒙𝒋 is a zero matrix and 𝑰𝒊𝒙𝒋 is an identity
matrix of 𝒊 rows and 𝒋 columns and 𝒒𝒎, 𝒖𝒎, 𝑨𝒎,
𝑩𝒎, and 𝑪𝒎 are the states, inputs, system matrix,
input matrix, and output matrix of the motor model,
respectively.

Control System Design

The final robot (5) describes the robot's
dynamics, which means the system could be
stabilized if an LQR controller was designed
based on those matrices. To teleoperate the robot,
however, the robot must receive and follow linear
and yaw speed setpoints. Therefore, the error
between the robot's current linear and yaw speed
and their respective setpoints must be calculated,
and the integrals of those errors must be sent to
the controller as additional states. Including this
integral action makes it possible to ensure that the
errors approach zero; that is, the speed equals the

setpoint. Therefore, an augmented model of the
system (6) was built, including the integral of the
linear and yaw velocity errors as two additional
states and the vector 𝒓 for the linear velocity 𝑥𝑟˙𝑒𝑓
and yaw velocity 𝜓𝑟𝑒𝑓 setpoints.

To design the gain matrix 𝑲𝑳𝑸𝑹 of the controller,
the matrices 𝑸 and 𝑹 are required. The LQR is an
optimal controller that minimizes a quadratic cost
function [11], and these two matrices define the
priorities in this optimization process. 𝑸, in this
case, is an 8×8 diagonal matrix, where each value
in its diagonal represents a weight that the controller
should consider for stabilizing each system state,
whereas 𝑹 is a 2×2 diagonal matrix containing
the weights for how much energy the controller
can demand from each of the system's inputs. The
control law can be defined as

 (7)

As previously mentioned, the 𝒚𝒂𝒖𝒈 does not
include the outputs of the motor model because the
robot prototype cannot measure the current torque
of the wheel motors. Therefore, a Kalman filter was
designed to address that the LQR controller needs
all current state values to calculate the control effort.
The Kalman Filter designed for this work was
based on the final robot model, not the augmented
model. The design procedure was similar to the
LQR controller's [11]: by creating two matrices,
namely the disturbance covariance matrix 𝑽𝒅 and
the noise covariance matrix 𝑽𝒏, a gain matrix 𝑲𝒇
was calculated (also by optimization), which makes
the filter stable. Once stability is reached, the filter
outputs converge toward the fundamental values
of the final robot model's states. It is essential
to highlight that the Kalman filter designed in

(6)

www.jbth.com.br

40 JBTH 2024; (March)Two-Wheeled Self-Balancing Robot

this paper is a linear estimator, which means it
converges while the robot operates around the fixed
point. Equation (8) shows the calculation of the
estimated full state vector of the final robot model
𝒒ˆ 𝑭. It can, then, be used to form 𝒒𝒂𝒖𝒈 (6), along
with the error as mentioned above integrals. The
whole control system is illustrated in Figure 3.

(8)

Results

Both stability and teleoperation tests were
conducted to evaluate the controller's performance.
Throughout these tests, the robot was powered
using a tether cable.

Stability Test

This test aimed to assess the system's response
to external disturbances. Two tiny pushes were
applied to the robot's base while it was balancing
on flat terrain: the first from the front and the second
from the back (Figures 4 and 5). The push from the
back is depicted in Figure 4 (top middle frame), the
Figure 5 shows the teleoperation test, and the results
are presented in Figures 6 and 7.

It is evident that both pushes, occurring around
seconds 6 and 11, led to an increase in the frequency
of the system's oscillations, as shown in Figure
6. Eventually, the robot returned to its previous
steady state. However, this steady state exhibited

significant oscillations. These oscillations indicate
that the controller is operating near the stability
limit, suggesting that slightly larger disturbances
could render the system marginally stable or even
unstable.

Teleoperation Test

This test aimed to analyze whether the controller
could enable the robot to follow linear and yaw
velocity setpoints sent by the user via a joystick.
Forward and backward motions, as well as turning
right and left, were tested individually.The results
are depicted in Figures 8 and 9. The robot maintained
its balance throughout the test, oscillating below 0.1
radians. Figure 8 illustrates the system's response
alongside the input signal, showcasing no delay,
overshoot, and a settling time of approximately 3.5
seconds. Figure 9 indicates that the robot moved
forward without delay but experienced a delay of
around 5 seconds when moving backward.

Additionally, it was unable to reach the setpoint
of 0.5 m/s. The controller executed numerous small
backward and forward movements to stabilize the
robot, resulting in oscillating linear velocity. This
behavior also affected the settling time, exceeding 10
seconds, as shown in Figure 9 for the second setpoint.

Conclusion

In this study, we successfully designed, modeled,
and implemented a self-balancing robot with an
effective control strategy. We demonstrated the

Figure 3. Control block diagram.

www.jbth.com.br

JBTH 2024; (March) 41Two-Wheeled Self-Balancing Robot

Figure 4. Robot during stability test. Figure 5. Robot during teleoperation test.

Figure 6. Linear velocity curve. Figure 7. Pitch angle curve.

robot's ability to maintain balance through technical
design, mathematical modeling, and real-world
testing. The control strategy based on the Linear
Quadratic Regulator (LQR) yielded promising
results in a natural flat environment. The stability
and teleoperation tests provided valuable insights
into the controller's performance. The stability test
highlighted the robot's resilience in recovering
from external disturbances, albeit with noticeable
linear and angular velocity curve oscillations.

Similarly, the teleoperation test showed oscillatory
behavior, but the robot maintained balance with
minimal pitch angle oscillations. However, these
oscillations and multiple backward and forward
movements led to an extended settling time.

Figure 8. Yaw angle response. Figure 9. Linear velocity response.

Several critical areas of improvement need attention
to enhance the self-balancing robot's capabilities
and robustness. Firstly, optimizing the robot's
weight is crucial for reducing energy consumption
and improving maneuverability.

Secondly, optimizing weight distribution to align
the center of mass with the wheel-ground contact point
can ensure a more stable system. Lastly, upgrading
the motor system, particularly by incorporating faster
motors for the wheels, can significantly enhance
dynamic response and agility. Integrating alternative
motor types with higher rotational speeds enables
rapid and precise movements, enabling the robot to
respond promptly to disturbances and achieve superior
performance across various environments.

V
e
lo

c
it
y
 (

m
/s

)

0.0

-0.2

0.0

0.2

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

A
n
g
le

 (
ra

d
)

0.0

-0.02

0.00

0.05

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

A
n
g
.
v
e
l.
 (

ra
d
/s

)

0
-0.4

-0.2

0.0

0.2

0.4

10
Time (s)

20 30 40 50

A
n
g
.
v
e
l.
 (

ra
d
/s

)

0
-0.50

-0.25

0.00

0.25

0.50

10
Time (s)

20 30 40 50

www.jbth.com.br

42 JBTH 2024; (March)Two-Wheeled Self-Balancing Robot

Acknowledgments

We would like to express our sincere gratitude to
MS. Marco Reis, Dr. Humberto Monteiro, and the
Centro Universitario SENAI CIMATEC for their
valuable support and contributions to this project.
Their guidance, resources, and facilities have been
instrumental in completing this work. We also
thank all those who have assisted and supported
us throughout this research endeavor.

References

1. DirectDriveTech. Diablo. DirectDrive.Available at:
<https://en.directdrive.com product_diablo>.

2. Segway. Segway x2 SE. Available at: <https:/ www.
segway.com/segway-x2-se/>.

3. Sun L, Gan J. Researching of two-wheeled self-balancing
robot base on LQR combined with PID. 2010 2nd
International Workshop on Intelligent Systems and
Applications. IEEE 2010:1-5.

4. Stanford Artificial Intelligence Laboratory et al. Robotic
operating system. Available at: <https://www.ros.org>.

5. Klemm V et al. LQR-assisted whole-body control of
a wheeled bipedal robot with kinematic loops. IEEE
Robotics and Automation Letters 2020;5(2):3745-
3752.

6. Kollarcik A. Modeling and control of two-legged
wheeled robot. 2021. Master thesis, Czech Technical
University in Prague.

7. Raspibotics. MABEL (Multi Axis Balancer Electronically
Levelled). Raspibotics. Available at: <https://raspibotics.
github.io/MABEL/>. Accessed on: 16 Jun. 2023.

8. Klemm V et al. Ascento: A two-wheeled jumping robot.
In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE 2019:7515-7521.

9. Kim S, Kwon S. Dynamic modeling of a two-
wheeled inverted pendulum balancing mobile robot.
International Journal of Control, Automation and
Systems 2015;13:926-933.

10. Tóth R et al. Crucial aspects of zero-order hold LPV
state-space system discretization. IFAC Proceedings
Volumes 2008;41(2):4952-4957.

11. Brunton SL, Kutz JN. Data-driven science and
engineering: Machine learning, dynamical systems,
and control. Cambridge University Press,2022.

