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Design, Manufacturing and Testing of a Two-Wheeled Self-Balancing Robot
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This work presents a self-balancing robot's modeling, manufacturing, and testing. This study aimed to design 
and construct a robot capable of maintaining balance while stationary and in motion, employing an effective 
control strategy. The robot's design incorporates sensors, microcontrollers, actuators, and control algorithms. 
The control strategy involved implementing an LQR (Linear Quadratic Regulator) controller and a Kalman 
filter for state estimation. The results demonstrate the robot's ability to effectively maintain balance and navigate 
flat terrain while controlled by a joystick. This study provides valuable insights into the design and control of 
self-balancing robots.
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Mobile robots have garnered significant 
attention and importance in today's technological 
landscape.  Among the diverse range of 
mobile and self-balancing robots stand out due 
to their myriad applications [1,2], particularly in 
transportation and logistics. 

The choice of focusing on self-balancing robots 
for this project arises from their exceptional 
mobility on flat terrains and ability to navigate 
common indoor obstacles like stairs and ramps. 
However, achieving this mobility requires tackling 
the challenging task of maintaining balance, given 
the strongly nonlinear behavior of these robots [3]. 

This paper presents the balancing and 
teleoperation performance achieved by the 
implemented control system of an original two-
wheeled self-balancing robot. A model-based 
approach was adopted for the controller, with 
system modeling considering the robot's dynamics 
and the wheel actuators, thus eliminating the need 
for dedicated joint controllers. 

This project is an open-source research platform, 
providing a resource for students and researchers 
to delve into robotics. All software was developed 
using ROS (Robot Operating System) [4], a widely 

used open-source middleware for robotics to 
facilitate our study.

 
Materials and Methods

 
Robot Prototype

The design of the robot drew inspiration from 
the Ascento robot [5] and the work of Kollarčík 
[6]. These robots feature a substantial base that 
houses most of the robot's mass and two articulated 
legs with two joints each, enabling complex 
maneuvers such as navigating obstacles, climbing 
stairs, and jumping; however, unlike these robots 
that use a single servomotor per leg along with 
an additional mechanism to ensure linear up-and-
down movement, a simplified design with two 
servomotors was adopted for this project, similar 
to the robot MABEL [7].

The Figures 1 and 2 illustrate the robot's 3D 
model and genuine model. The upper part of the 
robot serves as the base, housing its sensors and 
electronics. An MPU6050 Inertial Measurement 
Unit (IMU) was utilized in this model, directly 
connected to a Raspberry Pi 4. The U2D2 board 
facilitates communication via USB between 
the Dynamixels and the Raspberry Pi 4. The 
wheels were equipped with two Dynamixels of 
the XM430-W210 model, while four MX-106 
Dynamixels were used for the joints in the legs. 
Powering the entire system is a 14.8-volt lithium 
polymer battery (LiPO).
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The Dynamic Model

A two-wheeled self-balanced robot's design, 
modeling, and control have been extensively 
researched and implemented. Klemm and 
colleagues [5,8] constructed a self-balancing 
robot that combines the efficiency of wheels with 
the mobility of legs to navigate uneven terrain and 
obstacles. Kim and Kwon [9] investigated and 
presented the dynamic equations of the wheeled 
inverted pendulum, while Kollarčík [6] designed 
a wheeled leg system based on these equations. 
The model utilized in this paper (1) is the one 
developed in [9] using the Lagrangian method. It is 
important to note that this model does not account 
for the legs, so the robot was modeled as having a 
fixed rod.

  (1)

  (2)

  (3)

The state vector 𝒒˙ is composed of the linear 
velocity 𝒙˙, the pitch velocity 𝜽˙, and the yaw 
velocity 𝝍˙. Figure 2 illustrates these variables. 
The input vector 𝒖 is composed of the left and the 
right wheel's motor torque 𝝉𝑳 and 𝝉𝑹, respectively. 
The linearization of the system is performed by 
calculating 𝑨𝒓 and 𝑩𝒓, which are the Jacobian 
matrix of the system (1) concerning the state vector 

𝒒𝒓 (4) and the input vector 𝒖 (3), respectively, at the 
system's fixed point (zero for all states). The pitch 
angle is added in 𝒒𝒓 (different from 𝒒˙) because it is 
also desirable to control the pitch angle of the robot. 
This model is also in continuous time, so it must be 
discretized to be implemented in a microcontroller. 
The discretization was performed by applying the 
zero-order hold [10] in 𝑨𝒓 and 𝑩𝒓 with a sampling 
period of 0.0125 seconds (80 Hz).

 
(4)

The mathematical model of the robot relies 
on wheel torques as inputs, while the actuators 
are controlled using Pulse Width Modulation 
(PWM). Therefore, it is necessary to establish a 
relationship between these two variables to send 
the correct command directly to the motors rather 
than to a low-level joint controller. Moreover, the 
accurate actuators exhibit dynamics that the robot 
model does not consider. By integrating the robot's 
dynamic model with the motor's dynamic model, we 
can more accurately represent the system's overall 
dynamics.

The dynamics of the wheel motors can be 
represented as a first-order system, with the PWM 
duty cycle as input and torque as output. It is 
important to note that the wheels' torque serves as 
both the input for the robot model and the output 

Figure 1. The robot's designed and manufactured 
model.

Figure 2. Robot axis and state variables.
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for the motor model. The state vector of the final 
model comprises the states of both the robot and 
the motor model. However, the output vector only 
includes the outputs of the robot model because the 
motor model's outputs are not directly measurable. 
The final robot model is depicted in Equation (5), 

  

(5)

where 𝟎𝒊𝒙𝒋 is a zero matrix and 𝑰𝒊𝒙𝒋 is an identity 
matrix of 𝒊 rows and 𝒋 columns and 𝒒𝒎, 𝒖𝒎, 𝑨𝒎, 
𝑩𝒎, and 𝑪𝒎 are the states, inputs, system matrix, 
input matrix, and output matrix of the motor model, 
respectively.

 
Control System Design

The final robot (5) describes the robot's 
dynamics, which means the system could be 
stabilized if an LQR controller was designed 
based on those matrices. To teleoperate the robot, 
however, the robot must receive and follow linear 
and yaw speed setpoints. Therefore, the error 
between the robot's current linear and yaw speed 
and their respective setpoints must be calculated, 
and the integrals of those errors must be sent to 
the controller as additional states. Including this 
integral action makes it possible to ensure that the 
errors approach zero; that is, the speed equals the 

setpoint. Therefore, an augmented model of the 
system (6) was built, including the integral of the 
linear and yaw velocity errors as two additional 
states and the vector 𝒓 for the linear velocity 𝑥𝑟˙𝑒𝑓 
and yaw velocity 𝜓𝑟𝑒𝑓 setpoints.

To design the gain matrix 𝑲𝑳𝑸𝑹 of the controller, 
the matrices 𝑸 and 𝑹 are required. The LQR is an 
optimal controller that minimizes a quadratic cost 
function [11], and these two matrices define the 
priorities in this optimization process. 𝑸, in this 
case, is an 8×8 diagonal matrix, where each value 
in its diagonal represents a weight that the controller 
should consider for stabilizing each system state, 
whereas 𝑹 is a 2×2 diagonal matrix containing 
the weights for how much energy the controller 
can demand from each of the system's inputs. The 
control law can be defined as 

  (7)

As previously mentioned, the 𝒚𝒂𝒖𝒈 does not 
include the outputs of the motor model because the 
robot prototype cannot measure the current torque 
of the wheel motors. Therefore, a Kalman filter was 
designed to address that the LQR controller needs 
all current state values to calculate the control effort. 
The Kalman Filter designed for this work was 
based on the final robot model, not the augmented 
model. The design procedure was similar to the 
LQR controller's [11]: by creating two matrices, 
namely the disturbance covariance matrix 𝑽𝒅 and 
the noise covariance matrix 𝑽𝒏, a gain matrix 𝑲𝒇 
was calculated (also by optimization), which makes 
the filter stable. Once stability is reached, the filter 
outputs converge toward the fundamental values 
of the final robot model's states. It is essential 
to highlight that the Kalman filter designed in 

(6)
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this paper is a linear estimator, which means it 
converges while the robot operates around the fixed 
point. Equation (8) shows the calculation of the 
estimated full state vector of the final robot model 
𝒒ˆ 𝑭. It can, then, be used to form 𝒒𝒂𝒖𝒈 (6), along 
with the error as mentioned above integrals. The 
whole control system is illustrated in Figure 3.

  
(8)

 
Results

Both stability and teleoperation tests were 
conducted to evaluate the controller's performance. 
Throughout these tests, the robot was powered 
using a tether cable.

Stability Test

This test aimed to assess the system's response 
to external disturbances. Two tiny pushes were 
applied to the robot's base while it was balancing 
on flat terrain: the first from the front and the second 
from the back (Figures 4 and 5). The push from the 
back is depicted in Figure 4 (top middle frame), the 
Figure 5 shows the teleoperation test, and the results 
are presented in Figures 6 and 7.

It is evident that both pushes, occurring around 
seconds 6 and 11, led to an increase in the frequency 
of the system's oscillations, as shown in Figure 
6. Eventually, the robot returned to its previous 
steady state. However, this steady state exhibited 

significant oscillations. These oscillations indicate 
that the controller is operating near the stability 
limit, suggesting that slightly larger disturbances 
could render the system marginally stable or even 
unstable.

Teleoperation Test

This test aimed to analyze whether the controller 
could enable the robot to follow linear and yaw 
velocity setpoints sent by the user via a joystick. 
Forward and backward motions, as well as turning 
right and left, were tested individually.The results 
are depicted in Figures 8 and 9. The robot maintained 
its balance throughout the test, oscillating below 0.1 
radians. Figure 8 illustrates the system's response 
alongside the input signal, showcasing no delay, 
overshoot, and a settling time of approximately 3.5 
seconds. Figure 9 indicates that the robot moved 
forward without delay but experienced a delay of 
around 5 seconds when moving backward.

Additionally, it was unable to reach the setpoint 
of 0.5 m/s. The controller executed numerous small 
backward and forward movements to stabilize the 
robot, resulting in oscillating linear velocity. This 
behavior also affected the settling time, exceeding 10 
seconds, as shown in Figure 9 for the second setpoint. 

Conclusion

In this study, we successfully designed, modeled, 
and implemented a self-balancing robot with an 
effective control strategy. We demonstrated the 

Figure 3. Control block diagram.
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Figure 4. Robot during stability test. Figure 5. Robot during teleoperation test.

Figure 6. Linear velocity curve. Figure 7. Pitch angle curve.

robot's ability to maintain balance through technical 
design, mathematical modeling, and real-world 
testing. The control strategy based on the Linear 
Quadratic Regulator (LQR) yielded promising 
results in a natural flat environment. The stability 
and teleoperation tests provided valuable insights 
into the controller's performance. The stability test 
highlighted the robot's resilience in recovering 
from external disturbances, albeit with noticeable  
linear and angular velocity curve oscillations.

Similarly, the teleoperation test showed oscillatory 
behavior, but the robot maintained balance with 
minimal pitch angle oscillations. However, these 
oscillations and multiple backward and forward 
movements led to an extended settling time. 

Figure 8. Yaw angle response. Figure 9. Linear velocity response.

Several critical areas of improvement need attention 
to enhance the self-balancing robot's capabilities 
and robustness. Firstly, optimizing the robot's 
weight is crucial for reducing energy consumption 
and improving maneuverability.

Secondly, optimizing weight distribution to align 
the center of mass with the wheel-ground contact point 
can ensure a more stable system. Lastly, upgrading 
the motor system, particularly by incorporating faster 
motors for the wheels, can significantly enhance 
dynamic response and agility. Integrating alternative 
motor types with higher rotational speeds enables 
rapid and precise movements, enabling the robot to 
respond promptly to disturbances and achieve superior 
performance across various environments.
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