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Application of Generative Autoencoders 
in the Detection of Anomalies in Hypercompressors

Zoroastro Fernandes Filho1*, Alex Álisson Bandeira Santos1
1SENAI CIMATEC University Center; Salvador Bahia Brazil

Hypercompressors are essential assets that compress high-flow-rates of ethylene to pressures between 100~350 
MPa in the LDPE industry. They are sources of essential risks and costs. This work proposes an unsupervised 
and univariate monitoring method for detecting anomalies in hypercompressors through data collected from an 
online monitoring system in an actual installation. A variational autoencoder learns the process of generating 
shapelets associated with vibrational patterns. A combination of matrix profile algorithms automatically selects 
the training data set. A β-VAE composed of MLP layers is trained and applied on the input space so that a voting 
operation and a box-cox transformation on the absolute residual errors between the inputs and outputs lead 
to the upper outlier detection threshold, obtained by the Tukey fence method. The model detected suspicious 
vibration patterns classified a priori as potential anomalies.
Keywords: Hypercompressors. Matrixprofile. β-VAE. Anomalies.

Introduction

The polymerization of low-density polyethylene 
(LDPE) is processed on an industrial scale under 
temperatures of 200 to 300 oC and pressures of 100 
to 350 MPa, achieved through the compression 
of ethylene by special reciprocating compressors 
(hypercompressors, occasionally also called 
secondary compressors). Modern LDPE mega 
plants are equipped by hypercompressors with 
capacities of up to 400 kNm3 and 33,000 kW 
[1]. Due to the flammability and high pressures 
involved, potential risks are inherent in this 
process, and thus, these machines are sources of 
essential risks and costs for the LDPE industry. The 
development of anomaly detection methods based 
on monitoring data is essential.

According to Park and colleagues [2], a 
large amount of data, and appropriate sampling 
rates, becomes mandatory for an acceptable 
mathematical model of a hypercompressor. There 
are some examples of conventional reciprocating 

compressors in the literature, but it is rare for 
hypercompressors [3,4]. The principal component 
analysis (PCA) is widely used among the techniques 
available for creating models. Considering LDPE 
plants, according to Park and colleagues [2], 
some researchers have developed fault detection 
models based on PCA to predict dangerous thermal 
decomposition reactions due to sudden compression 
or excess peroxide injection that occur in autoclave 
reactors of LDPE plants [5,6]. However, the 
theoretical assumption of the classical PCA 
transformation, assuming linearity and projecting 
the data into a low-dimensional latent space, may 
need to fit better with the nonlinear nature of 
vibrations typically monitored in reciprocating 
compressors in general. We propose the application 
of a variational autoencoder (VAE) to overcome 
this limitation.

According to Sivalingam and colleagues [7], 
while a classical autoencoder (AE [8]) learns to 
make predictions from some observations, the 
variational autoencoder (VAE [9]) learns to simulate 
the data generation process. An essential effect of 
VAE is the possibility of revealing a potential 
understanding of the inherent causal relationships 
of the input data entangled in the latent space, 
providing a better generalization of the data and not 
only considering time-variant or invariant data. In 
this way, VAE allow its application in monitoring 
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stationary or non-stationary processes, typically 
displayed in monitoring hypercompressors.

The data used in this work consists of 36 
vibration variables (for each hypercompressors 
cylinder) and the motor’s electrical current. A set 
of operating data considered “non-suspicious” was 
automatically selected by a method composed of 
an algorithms combination based on matrixprofile 
(MP) [10] and MP snippet [11]. Then, a β-VAE [13] 
was trained, and the latent space obtained by the 
encoder and the residual error about the encoder 
inputs led to the threshold of outliers, discriminating 
“suspicious” vibratory patterns from “normal” 
ones through a box-cox transformation combined 
with the “Tukey fence” method [14]. The extracted 
suspicious patterns were classified as potential 
anomalous cylinder vibration shapelets [15]. Data 
sampling (~ six continuous months) was performed 
every minute, starting from an online vibration 
monitoring system in an actual installation.

Materials and Methods

Process Description

Figure 1 describes the LDPE production process 
(autoclave reactor) in a simplified way. Before 
bagging the pellets, LDPE is produced in three 

stages: Compression, Reaction, and Extrusion. 
First, the ethylene is compressed sequentially by the 
two compressors (primary and secondary), reaching 
the reaction pressure. In the reactors, in addition to 
ethylene, a reaction initiator is also injected, up to a 
maximum of 350 MPa, and thus the polymerization 
reaction is initiated. Ethylene gas is the primary raw 
material. The compression section requires most of 
the energy of the production process, and the hyper 
compressor is the leading equipment in the chain 
described here.

Sensor Location and Compression Cycle

An accelerometer measures the impacts occurring 
in the intermediate body, those resulting from the 
inertia of the parts, and the loads arising from the 
effort to compress the gas ([Figure 2 (side view of 
a hyper compressor cylinder)]. 

With each rotation of the shaft (360o), starting 
from the Top Dead Center (TDC), the compression 
cycle is divided into four stages: 1) 0o to 25o – re-
expansion, followed by the opening of the suction 
valve, 2) 25o to 180o – suction, followed by closing 
the suction valve, 3) 18o to 290o – compression, 
followed by opening the discharge valve and 4) 
290o to 360o – expansion, followed by closing the 
discharge valve.

Figure 1. LDPE: Gas flowchart.
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Dynamic Patterns (shapelets)

Vibration (acceleration) data is available in the 
Root Mean Square (RMS) metric and collected at 
sampling rates of the order of 20 kHz. The RMS 
values   are measured and calculated in segments, 
following time intervals relative to each 1/36th 
crankshaft rotation every minute. Each measured 
segment is stored in a database. Thus, typical 
vibration patterns at each shaft turn, composed 
of 36 segments (shapelets), emerge as objects 
of investigation (Figure 3). The numbering of 
the segments in the figure corresponds to the 
angular movement of the crankshaft shaft, which 
corresponds to 10-degree angles.

Each segment is monitored as a univariate time 
series in the collected data. The shaft rotation 
speed is approximately 200 RPM. The compressor 

has eight cylinders and two stages, four in each, 
labeled 1-1A, 1-1B, 1-2A, 1-2B for the 1st stage, 
and 2-1A, 2-1B, 2-2A and 2-2B for the 2nd stage 
(Figure 4).

Monitored Variables and Database

In this work, the data from the monitored 
segments were rearranged sequentially and 
displayed into a univariate time series (Figure 5). 
The 36 time series for each cylinder were converted 
into a single univariate time series, referred to as 
RMS_Avg. The conversion provides information 
about the evolution of vibration patterns over time. 
Consequently, the final length of RMS_Avg is a 
multiple of 36. Data from all cylinders were used.

Table 1 shows the variables (in univariate form) 
monitored for 6 months.

Figure 2. Hypercompressor – Accelerometer location.

Each shaft rotation triggers a phase sensor, which is not shown in the Figure.

Figure 3. Typical vibration with each turn of the shaft.
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Figure 4. Physical position of the cylinders.

Training and Testing Data

In extensive collections of reciprocating 
compressor monitoring data, the challenge arises 
of automatically labeling the most typical and/or 
representative data in various operating contexts 
considered “normal”. We proposed the use of an 
algorithm based on matrixprofile (MP) [10] and 
MP snippet to overcome this barrier, [11]. In Imani 
and colleagues [11], the authors demonstrated the 

usefulness of the MP snippet algorithm to, at a 
high level, seek to answer the question “Show me 
some representative/typical data...”. According 
to the authors, despite being trivial in many 
domains, surprisingly, the difficulty persists in 
extensive data collections, given the complexity 
of answering what “representative/typical data” 
actually means. In this work, the balance in 
the choice of hyperparameters of the proposed 
algorithm is expected to maximize the probability 

Figure 5. Univariate time series (RMS_Avg).

Table 1. Monitored variables.

Series Description Variables Instances
RMS_Avg Acceleration 8 32054868

Current Electric current 1 890413
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of selecting the most representative data possible 
for training instances.

Steps for Creating the Model

Figure 6 shows the model development steps, 
from cleaning the data to obtaining outliers.

Data cleaning (step 1) excludes sensor errors and 
removes instances with missing data and periods 
with vibration values   above pre-defined alarms. 
Step 2 requires some heuristics, complementing 
data cleaning, excluding stop and start intervals. 
To this end, we selected operational periods when 
the motor operates above a minimum power value 
(electric current > 300 A), consistent with full  
LDPE production operational regimes.

An unusual shapelet (discord [10]) tends to have a 
high distance profile value (PD [10]). In the RMS_Avg 
series, discords are expected to be extremely rare due 
to the cyclic vibration patterns typical in reciprocating 
compressors. A “normal” shapelet (motif [10]), more 
common, arising in typical operational situations, 
tends to lower PD values. The two classes (motifs and 
discords) are fundamental objects in the search motors 
contained in MP algorithms. The idea is to use such 
mechanisms to select training instances.

For each cylinder, we divided the RMS_Avg 
series into k contiguous subseries, Figure 5, step 
3, so all subseries contained only groups of 36 
instances equidistant one minute apart.

In step 4 of Figure 5, the PD’s, (series ) are 
calculated by applying the MP algorithm on each 
of the  separate subseries,  

,  . T h e  M P 
algorithm was applied sequentially on sections 
of sequential windows of length  and moving 
windows of length  on each ,  
obtaining the set of series ,

 .  and  
are hyperparameters.

For step 5, the idea is to take advantage of 
the periodic nature of vibrational patterns and 
the consequent expectation of regularity (albeit 
relative) of these patterns in different sections of 
each . We applied the MP snippet algorithm on  

to reduce the probability of selecting “suspicious” 
shapelets as “normal”. The algorithm searches each 
consecutive section of size  of each , adopting 
moving windows of size  ( ), extracting its 
most representative shapelets. This occurrs because 
very sudden changes in PD values   (suspicious 
transients) tend not to represent the fixed window 
considered and, therefore, not detected by the MP 
snippet algorithm as a training instance. The integer 
value  indicates the desired number of shapelets 
retrieved from each . The indices of the snippets 
retrieved in  indicate the location of the shapelets 
retrieved in .  is a hyperparameter.

By setting the parameter , we maintain 
the expectation that the balance between the choice 
of  and  guarantees the adequate selection of 
training instances. At the end of the process, 
indices of the  shapelets will be selected for training 
for each cylinder. Chart 1 shows the pseudocode 
described in the previous paragraphs. Data from 
the eight cylinders were used for training the VAE.

As an example, taking  fixed and equal to the 
length of the shapelets , the hyperparameters 
in Table 2 are expected to automatically select two 
“normal” shapelets every 30 minutes.

Intuitively, a higher value of w implies a lower 
probability of selecting more representative 
data because a smaller number of representative 
shapelets will be recovered for the same section of 
size . The converse is accurate; however, in this 
case, a more significant risk is expected in selecting 
suspicious shapelets as more representative data 
because there is a greater probability of persistent 
suspicious values   occurring, with a duration of the 
order of the size of the fixed window .

A higher value of  implies a more significant 
amount of data for training; however, due to the 
inherent repeatability of shapelet patterns, it is 
expected that from a particular value of  onwards, 
an increase in the number of training instances does 
not necessarily imply greater capability to learn 
patterns..

In Figure 6, steps 6 to 10 describe the process 
from calculating the VAE to the threshold of outliers 
obtained by the Tukey fence method.
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Figure 6. Steps for creating the model.

Table 2. MP hyperparameters and MP snippet.

MP MP snippet
m 36 w 30 min Qt 2 m 36 w 30 min

β-VAE and Vibration Monitoring

Compressor vibration patterns are diverse, but 
this diversity arises from a relatively small and 
coherent set of mechanical properties, physical 
rules, construction, and operating principles. VAEs 
can learn representations in the latent structure of 
data and extract concepts based on the learned 
patterns.

Variations of VAEs are available in the literature. 
In β-VAE [13], the cost function  includes the 
real hyperparameter β, with . 
While the reconstruction term  leads to the 
separation of points in the latent space, the second 
term  (Kulback-Leibler divergence multiplied 
by β) does the opposite, avoiding the learning of 
non-existent representations in the original data 

space [7]. According to the authors, β “encourages/
discourages” the disentanglement of latent 
variables. Table 3 shows the architecture used in 
β-VAE and the hyperparameters.

Inference

For each cylinder, we concatenate the 
subseries and rearrange them into sequential 
batches of 36 units, one-time unit apart concerning 
the previous batch, along the entire length (size) 
of the concatenated subseries, obtaining a new 
series of sequential batches , of size ( -36, 
36).

Then, the trained β-VAE reconstructed each 
batch contained in , obtaining the analogous 
batch series .

1) Data cleanning (It excludes stops, starts, sensors errors, missing data and periods with vibra�on values above the protec�on limits)

2) Selec�on of valid opera�ng condi�ons (motor electrical current > 300 A)

3) Split RMS_Avg into contoguos subseries (remove instances with ∆t > 1 min)k

4) Subseries PD's - Apply MP (fixed size windows over each
th

subseriesw k)

5) Obtain "normal" opera�ng data - Apply snippet algorithm on PD's

6) Dataset - Concatenate PD's and split set into trainning, valida�on and test

7) VAE trainning, reconstruc�on and vo�ng on dataset

8) Calculate residual values - (r = input - reconstruc�on)

9) Box - Cox transforma�on on residual values

10) Obtain outliers - Threshold obtained using Tukey fence method
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Chart 1. Pseudocode for automatic selection of VAE training instances.

Table 3. β-VAE architecture.

Scaler MinMax
Architecture MLP
Optimizer Adam

Training + validation   
data

(36495, 36)

Test data  (1921, 36)
Input + encoder 

layers
(Dense + BatchNormalization) 

(36, 27, 18, 18, 9)
Loss function LeakyRelu
Latent space 1

Decoder + output 
layers

(Dense + BatchNormalization) 
(9, 18, 18, 27, 36)

Regularizer 1E-11
Epochs 80

Batch size 1
β 0.0001

Qt and fixed window
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A new series containing the residual values   
 was computed. The lst indices 

of the best residuals (  define, by   
voting, the choice of the best inference over .

Chart 2  presents the pseudocode. As additional 
information, the VAE training and test sets were 
transformed according to steps 6 and 7, aiming 
to more comprehensive learning of the shapelet 
generation process.

Results and Discussion

Table 4 shows the MAE and MSE metrics 
reconstructions obtained in our study. 

Figure 7a shows an example of an anomaly 
detected in cylinder 2-2B. The filled area (in red) 
highlights the difference between the observed 
and reconstructed values. Figure 7b shows the 
histogram and the detection threshold calculated on 
the transformed residuals (box-cox transformation) 
over . The decision threshold is shown in 
the vertical red line (“Tukey fences”, k=3) - 
values   higher than the threshold are considered 
“suspicious”. The anomaly detection rate reached 
0.0142% across the entire dataset.

Figure 7c shows four shapelets reconstructed 
from equidistant values   of the latent space [-3.748, 
-0.416, 2.915, 6.247] within the quantile interval 
[q0.0001, q0.9999]. Blue vertical lines separate the 
four patterns shown. This example illustrates how it 
is possible to understand the diversity of vibration 
patterns that arise from operational scenarios.

The histogram in Figure 7d shows the distribution 
of the latent space in 4 equally distributed 
compartments, also within the quantile range 
mentioned in item 7c.

Conclusion

This work aimed to establish a model for detecting 
potential vibration anomalies in hypercompressor 
cylinders.

The model was developed using operational 
data collected every minute for six months on a 
hypercompressor in an actual installation. The 
model considered 288 vibration variables, which 
were transformed into 8 univariate time series, each 
corresponding to a distinct cylinder. In parallel, 
another univariate time series, from the same time 
interval, representing the motor's electrical current 
used to finalize data cleaning, selecting periods in 
operational regime of interest.

Operation data labeled “normal” was extracted 
from the operation data using a combination of the 
MP and MP snippet algorithms.

A box-cox transformation was applied to 
the residual absolute errors between the values   
reconstructed by β-VAE and its inputs, and an 
outlier detection threshold was obtained by 
applying the Tukey fence method.

The anomaly detection rate reached 0.0142% on 
the selected dataset.

The research demonstrated the possibility of 
establishing a simplified model to detect potential  
vibration anomalies in a hypercompressor, 
allowing specialist technicians to focus their 
investigations on these instances and to correlate 
detected deviations with incipient operational 
and maintenance problems, improving safety and 
operational  costs in LDPE plants.

For future studies, we proposed to carry out a 
qualitative assessment of the physical significance 
of the detected anomalous shapelets.

Table 4. Reconstruction metrics

MAE MSE
RMS_Avg - training + validation 0.1055 0.0805
RMS_Avg – test 0.0841 0.0316
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Chart 2. Pseudocode for VAE inference.

Figure 7 . a) Example of anomaly detection, b) Histogram, outliers, and detection threshold, c) Examples 
learned by VAE, d) Relative frequency of shapelets occurrence.



www.jbth.com.br

JBTH 2023; (September) 243Autoencoders and Anomalies in Hypercompressors

As a second option, compare the nature of 
the detected anomalies by varying the size of 
the latent space, the family and architecture of 
the autoencoder, and the hyperparameters of the 
automatic selection of the training dataset.
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