
www.jbth.com.br

14

Enhancing DEVITO GPU Allocator Using Unified Memory by NVIDIA

Gustavo Araujo Alvaro Coelho1*, Atila Saraiva Quintela Soares1, João Henrique Speglich1, Marcelo Oliveira da Silva1
1Supercomputing Center for Industrial Innovation SENAI CIMATEC (CS2I); Salvador, Bahia, Brazil

DEVITO is a framework whose objective is to implement optimized stencil computing. Its execution can be
carried out both in the CPU and in GPU. For this reason, the data must be manipulated correctly so that, in
case of executions in the GPU, they are present in the memory of the GPU at the time of the execution. Natively,
DEVITO transfers data every time the operator is executed from OpenACC pragmas. This approach results
in performance degradation when the operator is executed repeatedly. To prevent redundant copies and
alleviate this bottleneck, an allocator based on unified memory was implemented, which makes manual data
transfer between CPU and GPU unnecessary, significantly reducing data transfer time in GPU applications.
Keywords: DEVITO. Unified Memory. GPU. Data Transfer.

Introduction

DEVITO [1,2] is a framework developed in
Python, whose objective is to implement optimized
stencil computation (e.g., finite differences,
image processing). This tool uses Sympy code
and automatic code generation, transforming the
user's Python implementation into C code, which
is lighter and faster to run computational kernels
on different platforms, such as CPUs or GPUs.
To perform data allocation, DEVITO implements
different classes of memory allocators.

Each one with specific characteristics,
from allocators based on the use of the POSIX
library to allocators based on non-uniform
memory access (NUMA). It is up to the user to choose
an allocator that presents the best characteristics
for his application. Given the available allocator
options and their different characteristics,
there is an essential similarity between them:
they all allocate data within the CPU memory.
Figure 1. Graphs illustrate the amount of data
transfer between CPU and GPU before kernel
execution. The blue bar represents kernel execution,

and the green bar represents memory transfer
between CPU and GPU.

Depending on the environment configuration,
the DEVITO operator can run on both CPU and
GPU. However, running on GPU requires data to be
present within its memory region. For this reason,
the device on which the data is initially allocated
is crucial for the system's performance and the
analysis of its functioning.

As DEVITO default allocators allocate data to
the CPU, data transfer before and after operator
computation is required. It uses pragma directives
from the OpenACC library through the sub-
directives copy in and copy out. The problem with
this approach is that the data transfer process is
defined within the operator, so if this operator is
executed multiple times with the same arguments
(e.g., execution using Checkpoint), data will also
be transferred multiple times, generating redundant
data stream that affects system performance.
Figure 1 illustrates the amount of data transferred
from CPU to GPU (Host to Device) before kernel
execution.

Materials and Methods

In order to reduce the number of redundant
copies mentioned above, a new allocator was
created based on unified memory. Data allocated in
unified memory can be accessed by CPU and GPU
devices, making an exact copy of data unnecessary.
Figure 2 illustrates the schematic unified memory,

Received on 20 December 2022; revised 8 January 2023.
Address for correspondence: Gustavo Araujo Alvaro Coelho.
Av. Artemia Pires Freitas, 8220, Cond. Viva Mais Master, Casa
6, Feira de Santana - BA. Zipcode: 44085-370. E-mail: gustavo.
coelho@fieb.org.br.DOI 10.34178/jbth.v6iSuppl. 1.267.

J Bioeng. Tech. Health 2023;6(Suppl.1):14-16.
© 2022 by SENAI CIMATEC. All rights reserved.

www.jbth.com.br

JBTH 2023; (January) 15Enhancing DEVITO GPU Allocator

Figure 1. Amount of data transfer between CPU and GPU prior to kernel execution.

Blue bar represents kernel execution and green bar represents memory transfer between CPU and GPU.

Figure 2. Schematic unified memory, which can be accessed by both CPU and GPU.

which can be accessed by both CPU and GPU [3].
The implementation of the new allocator was
based on the use of CuPy [4], which, in addition
to implementing unified memory in its structure,
is very familiar with the NumPy library, which
is widely used within DEVITO. The similarity
between the two meant that implementing CuPy
inside the DEVITO structure presented minimal
difficulties.

The default allocator of CuPy API is set to
use unified memory; any object created by it will
have its data allocated in MU. Therefore, once the
allocator was changed, a CuPy array of the same
size as the desired data was created to allocate the
data.

In order to analyze the obtained results and
verify how much the unified memory improves the
system performance, a test was applied. This test
ran an algorithm responsible for direct propagation
and adjunct calculation for a single source using

the DEVITO and PyRevolve tools. This algorithm
was run twice, once using the standard DEVITO
allocator and once using the unified memory-based
allocator.

The following environmental variables were used
to enable GPU execution with OpenACC:

● DEVITO_PLATFORM=nvidiaX;
● DEVITO_ARCH=nvc;
● DEVITO_LANGUAGE=openacc;

Results and Discussion

Based on the execution of the previously
mentioned test, it was possible to evaluate the
execution time of the algorithm. More specifically,
the execution time of the forward and reverse
methods, responsible for forward and reverse
propagation, respectively. These are the methods that
are most affected by the redundant transfer of data

Unified Memory

GPU GPU GPU CPU CPU... ...

+900ms +920ms +940ms +960ms +980ms 212s +20ms211s

CPU (72)

Processes (22)

[35815] python

CUDA HW (0000:60:00.0 - Tes

3.9% Kernels

96.1% Memory

66.8% HtoD memcpy

33.2% DtoH memcpy

Threads (81)

[47693] python

+

+880ms40ms

-
‒

Forward_64_gpu

20 processes hidden...

www.jbth.com.br

16 JBTH 2023; (January)Enhancing DEVITO GPU Allocator

when performing the checkpoint. Figure 3 shows the
graph with the execution times of these functions.
The unified memory allocation directly impacted
the reverse propagation processing time, showing
a significant decrease. This behavior is since using
unified memory removes redundant copies of data
made by the Devito tool. In addition, considering
the entire process of calculating forward and
reverse propagation, the application runtime with
unified memory performs three times better than
the standard implementation of the DEVITO tool.

Conclusion

DEVITO allocates data directly to the memory
of CPU memory, making it necessary that, when
running an application on the GPU, the data is
transferred at each execution. As a result, when
the operator is executed several times, data
transfers become redundant, affecting application
performance. A unified memory-based allocator
was developed to solve this problem. Execution

using this allocator makes data available to
GPU and CPU, making redundant data transfers
unnecessary. As a result, unified memory utilization
showed significantly better results than the tool of
the DEVITO default allocator.

References

1. Loubotin M. et al. DEVITO (v3.1.0): An embedded
domain-specific language for finite differences
and geophysical exploration. Geoscientific Model
Development 2019;12(3):1165–1187.OpenACC
Programming and Best Practices Guide. Available at:
openacc.org. Accessed on: 20 Nov. 2022.

2. Luporini F. et al. Architecture and performance of
DEVITO, a system for automated stencil computation.
CoRR 2018;abs/1807.03032.

3. Harris M. Unified Memory for CUDA Beginners.
Available at: <https://developer.nvidia.com/blog/unified-
memory-cuda-beginners/>. 2017. Accessed on: 14 Dec.
2022.

4. Nisinho R, Loomis SHC. Cupy: A numpy-compatible
library for nvidia gpu calculations. 31st Conference on
Neural Information Processing Systems 2017;151(7).

Figure 3. Execution times of the overthrust script, varying the number of checkpoints, using the default
DEVITO default allocator and the unified memory allocator.

D
A

-
C

K
P

s
 2

D
A

-
C

K
P

s
 1

6

D
A

-
C

K
P

s
 6

4

D
A

-
C

K
P

s
 8

D
A

-
C

K
P

s
 3

2

U
M

A
-

C
K

P
s
 2

U
M

A
-

C
K

P
s
 4

U
M

A
-

C
K

P
s
 1

6

U
M

A
-

C
K

P
s
 6

4

U
M

A
-

C
K

P
s
 8

U
M

A
-

C
K

P
s
 3

2

D
A

-
C

K
P

s
 4

0

500

1000

1500

2000

2500

3000

T
im

e
 [

s
]

Experiment per Number of Checkpoints

Execution Time Default Allocator (DA) x Unified Memory Allocator (UMA)

forward_takeshot_timing

forward_advance_timing

forward_lastfw_timing

reverse_reverse_timing

reverse_restore_timing

reverse_advance_timing

reverse_takeshot_timing

	1a Capa Suplemento
	JBTH SUPLEMENTO 1-2023-E-COM DOI-CAPA
	4a Capa Suplemento

