
www.jbth.com.br

1

Received on 18 December 2022; revised 5 January 2023.
Address for correspondence: Gabriel Pinheiro da Costa.
Avenida Orlando Gomes, No.1845, Piatã, Salvador, Bahia,
Brazil. Zipcode: 41650-010. E-mail: gabriel.pinheiro@fieb.
org.br.

J Bioeng. Tech. Health 2023;6(Suppl.1):1-5.
© 2022 by SENAI CIMATEC. All rights reserved.

Optimization of a Geophysical Application in GPU Through the Loop Tiling Technique

Gabriel Pinheiro da Costa1*, Murilo Boratto2, Marcelo Oliveira da Silva3, João Henrique Speglich4

1Supercomputing Center for Industrial Innovation SENAI CIMATEC (CS2I); Salvador, Bahia, Brazil

This work aims to present the results obtained in optimizing a viscoacoustic geophysical model written with the
DEVITO tool and optimized using the OpenACC tile directive for GPU execution. We compared three versions
of the operator using the NVIDIA NCU profiling tool: Naive, Tiling (32,4,4), and Mixed Tiling. The Naive version
does not use the loop tiling technique, the Tiling (32,4,4) version applies a tile of dimensions (32, 4, 4), and the
Mixed Tiling version uses different tile sizes to other loop nests. Analyzing the experimental results, it is notable
that the optimized versions substantially increase the cache hit rates and reduce the execution time by about
50%, attesting to the validity of the proposed solutions.
Keywords: HPC. Optimization. OpenACC. Loop Tiling. DEVITO.

Introduction

DEVITO is a tool for implementing computational
mesh models in symbolic language. It is a Python
package with automated code generation that allows
portability to different platforms [1]. DEVITO is a
helpful tool for building geophysical models for
parallel architectures.

DEVITO allows OpenACC to offload the
workload to a device with more processing power,
such as a GPU. OpenACC is a programming
standard for optimizing C, C++, and Fortran code.
The user uses directives to inform the regions of
the code that he wants to optimize in an automated
way [2].

Through environmental variables, DEVITO can
generate code with OpenACC directives capable
of promoting GPU execution and parallelization.
One such directive is the tile directive, which
applies the loop tiling technique [3] in a loop
nest with the dimensions defined as a parameter.
The loop tiling technique modifies a loop nest,
so data is no longer accessed sequentially in one
dimension but in multidimensional blocks of

predefined size [3]. This transformation uses better
nests’ spatial and temporal locality [4,5].

Materials and Methods

Developed Approaches

In the analyzed application, two kernels have a
more extensive workload, responsible for a large
part of the required computational effort: R and RP.

Thus, we selected three approaches for analysis
in the viscoacoustic model.

Naive
The tool’s default approach, without any

parameter optimization or modification of the
generated code. It only counts on the “advanced”
default optimization level. It is the most
straightforward approach.

Tiling (32,4,4)
The approach only uses the part-tile flag

(DEVITO native), not requiring any transformations
of the .cpp code generated by the framework. This
flag applies the loop tiling technique to all loop
nests restrained in the operator, using OpenACC’s
tile directive. The combinations of dimensions that
achieved the best performance were 32 elements
in x, 4 elements in y, and 4 in z [simply: (32,4,4)].

Mixed Tiling
It works with different tile sizes for loop nests.

www.jbth.com.br

2 JBTH 2023; (January)Optimization of a Geophysical Application in GPU

Using the OpenACC tile directive, the R kernel
applies the technique of loop tiling with dimensions
(32,8,4), whereas the RP kernel, through the same
process, applies a tiling of sizes (32,4,4). This
variation in tile dimensions in the two kernels
occurs because the R kernel reached the best
performance with measurements (32,8,4), while the
RP kernel got its peak performance with dimensions
(32,4,4).

Hardware and Experiments

NVIDIA Tesla V100 SXM2 32 GB cards
performed all tests, with exclusive access to the
hardware and no competition with other applications.
The following environmental variables were used
to enable GPU execution with OpenACC:

● DEVITO_PLATFORM=nvidiaX;
● DEVITO_ARCH=nvc;
● DEVITO_LANGUAGE=openacc.

The tests were carried out on a three-dimensional
model with 701 elements in each dimension, a value
that pushed the GPU memory storage capacity to
the limit. Each run conducted for 1,000 iterations
and applied a space order of 16 elements. All
runtime results are means of three runs performed
under the same conditions and parameters.

Profiling Tool - Nsight Compute (NCU)

Nsight Compute (NCU) [6] is a CUDA kernel
profiler that has a graphical interface and operates
by the command line. It offers a series of metrics
and sections (metric grouping), which can be
collected in a customized way by the user to restrict
the scope of the analysis. It is the correct tool to
obtain statistical and mathematical information
for each application’s kernel. Three sections of the
NCU were used to analyze the kernels presented
in this work.

GPU Speed Of Light Roofline Chart
This section brings two metrics of great value

for performance analysis. Arithmetic intensity is

the ratio of floating-point operations performed per
second, memory transfer in bytes, and per second.
This is a metric strictly related to memory traffic.
Performance measures the number of floating point
operations per second (FLOP/s) and indicates
computational performance.

Memory Workload Analysis
Displays data-related GPU memory resources,

including cache hit rates. The most relevant
metrics in this section are cache hit rates on L1
and L2.

Scheduler Statistics
This section summarizes the schedulers that

issue instructions. Each scheduler maintains a group
of warps from which it can pull instructions. In
each cycle, each scheduler checks the status of the
warps allocated in its group (Active Warps), looking
for warps that are not stalled (Eligible Warps) and,
therefore, ready to issue its next instruction. An
eligible warp is then selected, and its instructions
are issued (Issued Warp). The parameter that
strongly impacts the occupancy rate of a scheduler
is the number of registers needed per thread. Each
GPU SM has 4 sub-partitions, each one with a
scheduler.

Results and Discussion

Table 1 compares the execution times in seconds
for each of the three approaches. Table 2 presents
the number of cycles spent on each one of the
kernels.

Table 3 shows the R kernel results for this NCU
GPU Speed of Light Roofline Chart section. A
significant improvement in both performance and
arithmetic intensity is presented in both optimized
approaches. The Tiling (32,4,4) approach almost
tripled the values of these two metrics concerning
that obtained by the Naive version, and the Mixed
Tiling approach was able to surpass three times
the values obtained by the Naive version in both
metrics. In the RP kernel, the improvement was
also noticeable (Table 4), reaching an average of

www.jbth.com.br

JBTH 2023; (January) 3Optimization of a Geophysical Application in GPU

Approach Time (s)
Naive 220.14
Tiling (32,4,4) 112.47
Mixed Tiling 110.01

Table 1. Execution times.

Table 2. Cycles spent on each kernel.

Approach R RP
Naive 117.272.997 276.679.918
Tiling (32,4,4) 52.049.206 110.608.921
Mixed Tiling 43.834.245 110.124.618

Table 3. R - GPU speed of light roofline chart.

Approach Performance
(FLOP/s)

Arithmetic
Intensity

(FLOP/byte)
Naive 0.317 · 1012 0.53
Tiling (32,4,4) 0.953 · 1012 1.57
Mixed Tiling 1.069 · 1012 1.84

FLOP per byte almost twice that presented by the
Naive version in the two optimized approaches.
The average performance also increased notably in
the Tiling (32,4,4) and Mixed Tiling approaches.
The results presented by the two tables indicate
an increase in processing capacity over the
same volume of data (arithmetic intensity) and
better use of available computational resources
(performance).

Tables 5 and 6 show the results of the R and
RP kernels for the Memory Workload Analysis
section for the three approaches. We significantly
increased the cache rates achieved in L1 and L2 in
the R kernel with the two optimized approaches.
The Mixed Tiling approach performed better in L1,
increasing the hit rate at this cache level by almost
44 percentage points compared to the Naive version
and by more than 6 percentage points compared to
the Tiling (32,4,4) version. In the RP kernel, the
optimized approach also increased the cache hit rate
at both levels. In L1, this increase is more significant,
getting close to reaching twice that obtained by the
Naive version, while in L2, the growth is lower
but still perceptible, rising by about 7 percentage
points compared to the non-optimized version.
The values obtained in this section by the two
optimized approaches in both kernels converge
with the results presented. Increasing cache hit
rates allows more efficient use of data, reducing
processing bottlenecks and allowing the application
to use better available processing power (improved
performance and arithmetic intensity). The higher
L1 cache hit rate of the Mixed Tiling approach
compared to the Tiling (32,4,4) approach is
one factor that explains the slightly superior
performance of one strategy over the other.

Table 4. RP - GPU speed of light roofline chart.

Approach Performance
(FLOP/s)

Arithmetic
Intensity

(FLOP/byte)
Naive 0.370 · 1012 0.63
Tiling (32,4,4) 0.581 · 1012 1.23
Mixed Tiling 0.583 · 1012 1.22

Table 5. R - Memory Workload Analysis.

Approach L1 Cache Hit
(%)

L2 Cache Hit
(%)

Naive 34.37 36.38
Tiling (32,4,4) 71.42 59.95
Mixed Tiling 77.73 58.57

Table 6. RP - Memory Workload Analysis.

Approach L1 Cache Hit
(%)

L2 Cache Hit
(%)

Naive 33.68 30.61
Tiling (32,4,4) 61.60 37.92
Mixed Tiling 61.59 37.54

www.jbth.com.br

4 JBTH 2023; (January)Optimization of a Geophysical Application in GPU

Table 7 presents the R kernel results for the
scheduler statistics section. Although there is no
significant variation in the theoretical maximum
amount of warps per scheduler between the
Tiling(32,4,4) and Naive versions, the rates of
eligible and effectively issued warps are notably
accentuated in the Tiling (32,4,4) and Mixed Tiling,
which reach values that exceed three times that
obtained by Naive, with the Mixed Tiling approach
having slightly higher values. A similar but more
timid result is obtained by the optimized approaches
in the RP kernel, as shown in Table 8. The
theoretical maximum of warps per scheduler does
not change; however, the amount of eligible warps
exceeds twice the Naive version, and the average
warps emitted per cycle jumps from 0.14 to 0.25.
The results point to better use of the schedulers in
the Tiling(32,4,4) and Mixed Tiling versions, which
start to emit more warps per cycle and mitigate the
possibilities of taking the computational resources
to idleness. The increase in cache hit rates in
the optimized approaches is the main factor that
increased the average warps emitted.

Conclusion

The results reveal that both kernels are positively
sensitive to loop tiling. In the R kernel, the
application of the OpenACC tiling directive had
the main effect of substantially increasing the
cache hit rates at both levels in the two optimized
approaches. This better use of cache memory allowed
an increase in computational efficiency, observed
in improving metrics such as arithmetic intensity,
performance, and the rate of warps emitted per cycle.
After applying the loop tiling technique, the RP
kernel went through a process similar to that of
the R kernel, which had as its main positive effect
the increase in cache hit rates. This more efficient
use of cache memory increased computational
efficiency, increasing metrics such as arithmetic
intensity, performance, and the rate of warps emitted.
Therefore, despite the very similar version of the two
optimized approaches, the slightly higher cache hit
rate of the Mixed Tiling approach over Tiling(32,4,4)
in L1 ends up giving the process that uses mixed
tiling dimensions a slightly better performance.

Table 7. R - Scheduler statistics.

Approach Theoretical
Maximum

Eligible Emitted

Naive 5 0.19 0.11
Tiling (32,4,4) 4 0.65 0.35
Mixed Tiling 8 1.16 0.42

Table 8. RP - Scheduler statistics.

Approach Theoretical
Maximum

Eligible Emitted

Naive 4 0.19 0.14
Tiling (32,4,4) 4 0.40 0.25
Mixed Tiling 4 0.40 0.25

www.jbth.com.br

JBTH 2023; (January) 5Optimization of a Geophysical Application in GPU

References

1. Devito: Symbolic Finite Difference Computation.
Available at: https://www.devitoproject.org. Accessed
Nov. 2022.

2. OpenACC Programming and Best Practices Guide.
Available at: openacc.org. Accessed on: 20 Nov.
2022.

3. Jeffers J, Reinders J. High-performance parallelism pearls
volume two: multicore and many-core programming
approaches. Morgan Kaufmann 2015:410-416.

4. McKinley KS, Carr S, Tseng C-W. Improving data
locality with loop transformations. ACM Transactions
on Programming Languages and Systems (TOPLAS)
1996;18(4):424-453.

5. Kandemir M, Ramanujam J, Choudhary A. Improving
cache locality by a combination of loop and data
transformations. IEEE Transactions on Computers
1999;48(2):159-167.

6. Nsight Compute: Developer Tools Documentation.
Available at: https://docs.nvidia.com/nsight-compute/
NsightCompute/index.html. Accessed Nov. 2022.

	1a Capa Suplemento
	JBTH SUPLEMENTO 1-2023-C
	4a Capa Suplemento

