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There is a need to identify the best artificial images for each use case faced with several Deep Learning 
architectures for generating them. Twelve models with different hyperparameters were created to compare 
several networks with the generative architectures Autoencoder, Variational Autoencoder, and Generative 
Adversarial Networks in the 3D MNIST dataset. After training, the models were compared with loss functions 
to assess the difference between the original and artificial data, so that greater complexity did not translate into 
better performance, indicating the Autoencoder models as the best cost-benefit.
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Introduction

Computer vision has been providing many 
projects developed in image generation, with deep 
learning technologies (DL) showing advances 
for the generation of data in 2D, making use of 
architectures already relevant in the area [1]. 
On the other hand, the 3D segment is often in 
the background, maybe because of the high 
complexity concerning 2D or the computational 
power needed to process this data [2].

The need for automated 3D data generation 
comes from the difficulty of creating three-
dimensional representations manually, requiring 
too much time and research to build the items that 
will be portrayed [3].

The 3D MNIST dataset was used, which has 
12,000 images in three dimensions [4]. The data 
was adapted from MNIST, which has numbers 
from 0 to 9 handwritten in a 2D representation [5].

The article aims to compare the Autoencoder, 
Variational Autoencoder (VAE), and 
Generative Adversarial Networks (GANs) 
architectures regarding several evaluation 

metrics to present the performance of each 
architecture for representing 3D data [6-8]. 

Autoencoder

The Autoencoder (AU) architecture is composed 
of two smaller networks that seek to compress the 
input into a latent representation, a version Where 
only the essence of its structure remains. In the first 
network, the encoder, the original data is reduced to 
a one-dimensional vector h, where its characteristics 
are categorized by increasing importance, between 
0 and 1, to be discarded or preserved. In the next 
step, the decoder network receives the vectorized 
structure and performs the inverse process, returning 
the data to its original size and aspect, but with only 
the essence of its structure [9].

 Loss = -Log P(x|x’) (1)

To check the quality of the representation 
created by the network, the loss function observed 
in Equation 1 is used, where -log P compares the 
original input x with its latent representation x’. 
The loss in an autoencoder should be as small as 
possible, but it will hardly be zero. Considering 
that one of the main characteristics of the AU 
architecture is to learn the essentials and return 
data with reduced dimensionality, a loss of value 
0 implies a faithful reproduction of the image, 
which in turn denotes low learning of its main 
components, essentially creating a network that 
returns your input without a concrete benefit [10].
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Variational Autoencoder

The Variational Autoencoder (VAE) is an 
architecture composed of the union of two 
networks, an encoder, which maps the inputs 
and compresses them from the input to the latent 
space; and the decoder, which maps the data from 
the latent space to perform its decompression. 
The difference between VAE and Autoencoder 
architectures is the guarantee of properties in 
the latent space to allow the generation of new 
data. The latent space is the compressed data: 
its reproduction with lower dimensionality. 
Broadly, the VAE requires the standard Gaussian 
distribution anterior to the latent space. Thus, the 
VAE tends to maximize Equation 2 [11].

 P(z) = N (z|0, I) (2)

To solve it, the VAE needs to deal with defining 
the information that will be represented by the 
latent variable z and how to deal with the integral 
over z. The latent variable can be understood as the 
choice of a character to be generated by the model 
before assigning a value to any specific pixel, that 
is, the model will produce configurations for the 
generation of the character. The z settings tend to 
produce a character that resembles the initial die. 
Furthermore, the interpretation of dimensional 
samples can be extracted from a simple distribution, 
being it N (0, I), where I is an identity matrix 
[11]. That said, the model parameters are trained 
to minimize the reconstruction error between the 
reconstructed and the initial data, making use 
of the Loss function KL divergence, acting as a 
regularization term, to calculate this divergence.

Generative Adversarial Networks

Generative Adversarial Networks (GAN), are 
generative architectures based on Deep Learning, 
in which an adversarial training process takes 
place between two networks: A Generative model 
G that is based on the original distribution of data 
to generate a new sample, and a Discriminative 

model D that estimates the probability a data sample 
coming either from the original data distribution or 
from the sample generated by the Generative model 
G. This training occurs until the Discriminator 
becomes unable to discern between the 
original and generated data [8].

GANs are often used in the Computer Vision 
field to perform various tasks involving images. 
They can be used to generate higher resolution 
versions of images and create sketches, paintings, 
and others. During the training stage of this 
architecture, with the data generated by the 
Generator model, the Discriminator model has 
the role of correctly classifying between real and 
generated data. In consideration of the above, 
the final function of value V (G, D) is based on 
Equation 3, which involves the minimization of the 
Discriminator’s error and the maximum precision 
of the Generator when creating the images [8].

min max V (D, G) = Ex ~ Pdata(x) [Log D(x)] + 
Ez ~ Pz(z) [Log (1 - D(G(Z)))] (3)

Recurrent Neural Networks

The Recurrent Neural Network (RNN) is an 
artificial neural network, used for sequential data 
or time series. The RNN, unlike traditional neural 
networks, can remember previous information 
from the feedback, allowing the information to 
persist [12]. To decide, the network considers 
its current input and what it learned from the 
previous input. It has a “memory”, which stores 
the information of the calculations performed, 
enriching the expressive power of the model by 
capturing causal and contextual information [13]. 
That said, RNN manages to reduce the complexity 
of parameters, in addition to adjusting the 
weights through backpropagation and descending 
gradient processes, facilitating the learning 
process.

As there were advances in the development 
of RNNs, other architectures were created from 
it, such as Long-Short Term Memory (LSTM) 
[13] and Gated Recurrent Unit (GRU) [14]. 

G   D
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Convolutional Neural Network

The Convolutional Neural Network (CNN) 
is a neural network widely used in problems 
dealing with image data, such as pixels. 
Important applicability of CNN is the extraction 
or detection of image contents when the input 
propagates through deeper layers [15]. During the 
convolution process applied to images, weights 
are assigned to certain sets of pixels that can 
indicate lines, curves, and eventually, complex 
patterns, where higher weights denote greater 
importance of that set of pixels for the current task. 
In addition, there are other types of convolutional 
neural network architectures, such as the Fully 
Convolutional Network (FCN), a kind of 
convolutional neural network, which contains only 
convolutional layers, not having “Dense” layers.

Multilayer Perceptron

The Multilayer Perceptron, or MLP, is a simple 
artificial neural network with several interconnected 
neurons that present a non-linear mapping 
between an input vector and an output vector [16]. 
Efficiently, MLPs backpropagate the network’s 
error, based on that error, the weights of previous 
layers are recalculated starting from the last layer 
up to the first.

Materials and Methods

The approach chosen for this work was the 
comparative between practical experiments 
of several generative networks with different 
activation functions, number of layers, and number 
of neurons per layer. This exploratory, empirical, 
quantitative, and qualitative research seeks to 
identify the advantages of each architecture, 
ranging from the network training time to the 
quality of the data generated at the end of the 
process. The work was divided into 3 stages:

(1) search, 
(2) generation, 
(3) evaluation and synthesis.

In stage (1), a literature review was carried 
out where relevant works on the AU, VAE, and 
GAN architectures were identified, to verify the 
validity of the proposed comparison. During 
(2) a single base model was created for each 
architecture, subsequently, the bases were adapted 
into 4 models, divided into FCN, CNN with MLP, 
LSTM, and GRU, amounting to 12 models. In 
stage (3), the results of the models were grouped in 
tabular form, comparing the differences between 
the original image and that generated through 
the loss metrics Binary Cross-Entropy and Mean 
Squared Error (MSE), described in Equations 4 
and 5, generating a Table per metric, with both 
divided between architectures and their respective 
networks [17].

H (X) = −[θ log2 θ + (1 − θ) log2(1 − θ)] (4)

 (5)
 

Results and Discussion

The Autoencoder FCN model presented the best 
results for Binary Cross-Entropy, with a total loss 
of 0.1304 concerning the original data, followed by 
the Autoencoder models GRU, LSTM, and CNN 
with MLP, respectively, with the latter having the 
same loss value as the VAE model with the same 
architecture (Table 1).

For the MSE metric, Table 2 demonstrates 
a similar hierarchy, with FCN, GRU, and 
LSTM Autoencoder models having the smallest 
difference between the original and generated 
data, followed by the VAE CNN with MLP. 
Comparing the two Tables, it becomes noticeable 
that GANs obtained the worst performance for 
both metrics in all proposed architectures. To 
match the performance of GANs, it would be 
necessary to increase the time and computational 
power expressively, leading to the conclusion that 
this model should be preferentially used when 
there is a high processing capacity.

1 
N ∑ j=1

D (θj − θj )
2
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Conclusion

This study aimed to evaluate the AU, 
VAE, and GAN architectures in their 
ability to reproduce three-dimensional data 
using the MNIST 3D dataset as a basis. 
Using the Mean Squared Error and Binary Cross-
Entropy metrics, it was possible to observe that the 
AU-based models obtained representations closer 
to the original data, furthermore, these models 
required a lower tuning of hyperparameters 
and training time, obtaining high cost-
effectiveness in comparison to other architectures. 
In parallel, the VAE architectures obtained results 
close to the original data, with the LSTM and 
CNN models being comparable to the quality 
of the AUs. As for the GAN constructions, in 
addition to having a longer training, the resulting 
images and the metrics evaluated had poor quality. 
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